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Abstract 
Modern learning frameworks take advantage of the interconnection among individuals, multimedia artifacts, places, 
events, and physical objects. In this perspective, smart cities are primary providers of data, learning stimuli and realistic 
hands-on laboratories. Unfortunately, the development of smart-city-enabled learning frameworks leads to many privacy 
and security risks since they are built on top of IoT nodes, wireless sensors networks and cyber-physical systems. To 
efficiently address such issues, a suitable holistic approach is needed, especially to reveal the interdependence between 
different actors, e.g., cloud infrastructures, resource-constrained devices and big data sources. Therefore, this paper 
introduces a model to help the engineering of novel learning frameworks for smart cities by enlightening the problem 
space characterizing security. 
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1. Introduction 

The implementation of the smart city paradigm requires 
deploying emergent technologies to better manage the 
finite resources of modern urban areas (Allwinkle & 
Cruickshank, 2011). In essence, the main goal of a 
smart city is the enhancement of the quality of life of 
citizens, mainly by optimizing aspects related to 
healthcare, bureaucracy, public transportation and 
commerce, just to mention some. To pursue such 
vision, relevant advancements in several fields are 
required, including ICT, humanities and social 
sciences, architecture and environment protection. 
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With reference to our country, one of the most 
important drivers to pursue the smart city vision is the 
European Union. In fact, its policies provide several 
funding schemes to improve nine dimensions defining 
the quality of life, which complete the more aseptic 
gross domestic product indicator used to measure the 
economic and social development of a country. 
However, the dimension of education has been often 
neglected in favor of environmental challenges, 
pollution prevention, energy efficiency, and safety. 
Indeed, smart cities and learning can be merged as to 
pursue new, interactive and efficient frameworks. This 
requires bringing both learners and learning platforms 
into an interactive environment populated with wireless 
sensors, portable devices, and nodes of the IoT. Alas, 
the pervasive nature of smart paradigms demands for 
mechanisms to handle user mobility, manage big data 
sources, offload devices with constrained capabilities, 
and mitigate communication issues due to intermittent 
network coverage (Caviglione, 2006).  
In such a scenario, privacy and security of the entire 
architectural blueprint become critical aspects, which 
are the topics of this paper. In fact, the perception of a 
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“secure” environment is crucial for its acceptance. As 
an example, see the work by Wilkowska and Ziefle 
(2011) for a detailed study on the case of medical 
assistive technologies. Unfortunately, guaranteeing the 
security and privacy of users requires searching for a 
complex and fragile trade-off. For instance, learners 
cannot be completely anonymous and some 
information about their actions should be collected by 
the platform or by the supervisor in order to evaluate 
progresses, adapt the learning curve and draw 
reasonable assessments (Borcea et al., 2005). 
Moreover, the increasing personalization of the 
learning experience by means of big data sources, 
possibly enriched with bits gathered from social media, 
may open several opportunities to undertake attacks via 
social engineering techniques (Manca et al., 2016).  
Even if issues caused by the merge of learning 
platforms with smart city environments have not been 
explicitly discussed in the literature, several works 
already investigated trust, privacy and security features 
of e-learning frameworks. For instance, Anwar and 
Greer (2012) focused on trust, which is a core aspect 
for distance learning or for remotely interact with the 
software artifacts provided by a smart city. In fact, 
while in a classroom the authenticity is guaranteed by 
the physical presence, in a virtualized environment, 
other techniques have to be used. The work of 
Caviglione and Coccoli (2018) deals with smart 
learning platforms fed with big data generated by 
sensors, buildings and appliances deployed in a smart 
city, but does not offer a solution to protect the bulk of 
information or to prevent security flaws caused by 
improper access rights, incorrect mappings and 
conversions, de-anonymization attacks and 
steganographic threats. A possible solution is to deploy 
some layers for removing personal information, 
promote privacy awareness and provide context 
separation (Anwar et al., 2006). Alas, this is not a trivial 
task, especially in smart cities, where data are provided 
by different, heterogeneous sources and the volumes of 
information could not allow a fine-grained 
management (Hashem et al., 2016).  
Even if limited to legacy client-server frameworks, 
Miguel et al. (2012) discuss requirements to avoid 
attacks like spoofing, unauthorized accesses, fraudulent 
alteration of learning materials, injection of virus or 
malicious code, and Denial of Service (DoS). The work 
of Bdiwi et al. (2018) partially addresses smart cities as 
it investigates intelligent classrooms equipped with IoT 
nodes, smart devices and connected objects. In essence, 
authors propose to use blockchain technologies to 
guarantee security and authenticate data as to prevent 
misuses and attacks. A specular problem, i.e., 
authenticating users, is addressed by Kang and Kim 
(2015). 
Concerning mobile and ubiquitous frameworks, the 
work of Kambourakis (2013) surveys several security 

and privacy issues of mobile-learning and ubiquitous-
learning, but does not cover the use of smart or 
emerging paradigms, such as the Bring Your Own 
Device (BYOD) one (Miller et al., 2012). Lastly, the 
work of Neila and Rabai (2014) proposes a matrix-
driven design approach to quantify the security issues 
of e-learning platforms, especially technology-
dependent attacks, such as cross site request forgery, 
buffer overflows and DoS.  
To sum up, all the aforementioned works do not 
consider the issues, both in terms of security hazards or 
privacy leaks, arising from the use of smart cities to 
enhance learning frameworks. Additionally, the 
resulting complexity demands for a holistic approach, 
instead of solely considering an aspect at time, e.g., the 
guest operating system running core services or the user 
behavior. In this perspective, along the lines of 
Caviglione et al. (2014), this work introduces a holistic 
model to describe the privacy and security issues 
characterizing cutting-edge learning applications 
leveraging smart cities. In this respect, Zuev (2012) 
proposes a model for e-learning systems but it 
concentrates on the didactic risk, and hazards caused by 
the learning material and the delegation of 
responsibility from the teacher to the electronic 
Learning Management System (LMS). Thus, at the best 
of the authors’ knowledge, this is the first work dealing 
with security aspects of e-learning exploiting smart 
cities. 
The main contributions of this work are: i) a model to 
classify and organize security and privacy aspects of the 
joint use of smart city and learning environments, and 
ii) a methodology to isolate hazards of future learning 
applications and to reveal new ones. 
The remainder of the paper is structured as follows. 
Section 2 presents the proposed functional model. 
Section 3 deals with learner space, Section 4 discusses 
the hazards caused by data, and Section 5 showcases 
risks due to the mix of technologies implementing the 
learning infrastructure and the smart city. Section 6 
provides examples on how to exploit the modeling 
approach, while Section 7 concludes the paper and 
proposes some possible future extensions. 

2. Privacy and Security: A Holistic Model 

As hinted, the interplay among social, educational and 
technological aspects characterizing learning 
applications in smart cities leads to a very composite set 
of privacy and security issues. To understand and 
enlighten possible cause-effect relations including 
potential hazards, we introduce the model illustrated in 
Figure 1. 
As depicted, each space contains a homogenous set of 
entities implementing coherent and recognizable 
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aspects of the learning process. For the sake of clarity, 
Figure 1 only contains the most popular architectural 
components and technologies as well as learning 
models. Each space should be considered as a sort of 
base, which can be used to describe privacy and 
security within a well-given functional scope. In more 
detail, the model is articulated as follows: 

• Infrastructure Space: it groups all the software 
and hardware entities composing the smart-city-
learning paradigm, i.e., from user devices to 
server farms. In general, the resulting space is 
highly composite and complex as modern 
learning frameworks support on-the-road and 
hands-on didactics, hence mixing many 
technologies, including wireless 
communications, mobile agents, and cloud 
architectures (Caviglione et al., 2011a). 

• Data Space: it groups all the functionalities 
related to the creation, collection, processing and 
storage of data. It considers issues ranging from 
those characterizing standard learning objects to 
leakage of information in social network sites and 
Intelligent Tutoring Systems (ITS) as well 
(Riccucci et al., 2007). This space also describes 
attacks that can be developed by considering 
novel sources, such as those exploiting unknown 
relations nested within big data (Bertino & 
Ferrari, 2018) or weaknesses of crowd-based 
schemes collecting measures from the field 
(Ganti et al., 2011). 

• Learning Space: it groups the different learning 
methodologies that can be used in the smart-city-
capable scenario. For instance, it considers issues 
arising from interlinking of learning resources 

(Carbonaro, 2012) or from “interpersonal” 
relations, like bullying, lack of anonymity or the 
need of enforcing a rigorous execution of 
assessments (Marais et al., 2006).  

The three aforementioned spaces can be used as “bases” 
to describe the security and privacy features of learning 
applications in a holistic manner. For instance, an 
unsecure wireless channel could allow to collect 
insights from the data space or to infer some habits of 
the learner. Similarly, the data space can be used to 
attack the learner, even physically, e.g., by disclosing 
his/her geographical location. Another example deals 
with implementation-specific issues such as Web-based 
technologies prone to weaknesses identified by the 
Open Web Application Security Project, or 
misconfigured databases vulnerable to SQL injection 
(Caviglione et al., 2014). 
To discuss such relationships and dependencies, let us 
denote with I, D, and L the infrastructure, data, and 
learning space, respectively. Each one represents a 
collection of hazards related to the specific 
technological components of that space. More 
precisely, I={i1, i2, …, iN}, D={d1, d2, …, dM}, and 
L={l1, l2, …, lK}, where N, M, and K are the amount of 
threats of each space. Vulnerabilities of I, D, and L 
have to be addressed during the design and engineering 
of the learning application or mitigated at runtime with 
proper countermeasures.  
The interplay of the various techniques will result into 
a complete security and privacy space denoted with C 
and defined as: 
 

C = f (I, D, L), 

 

 
 

Figure 1 – The three spaces characterizing learning applications in smart-city environments. 
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where, f(·) is a design-dependent function. 
Unfortunately, defining a unique f(·), possibly 
analytical, could be unfeasible, but some relations can 
be empirically derived (Ten et al., 2010). Instead, we 
aim at defining a framework for quantitatively 

investigate vulnerabilities. Let us introduce with | · | a 
pseudo-cardinality operator, i.e., a measure of the 
impact of all the components of a space. As discussed 
by Caviglione et al. (2014), the complex mix of 
behaviors of learners, smart environments and ICT 
techniques can “amplify” the number of hazards and 
weaknesses of the entire framework. The combination 
of multiple vulnerabilities across different spaces can 
cause new threats, i.e.: 
 

| C | ≥ | I | + | D | + | L |    (1) 
 
By defining | C |= J, Equation (1) leads to J ≥N+M+K. 
To clarify this, let us introduce a toy example 
considering a learning application enhanced via social 
media. A possible visual representation can be obtained 
by using alluvial diagrams as depicted in Figure 2 
showcasing the mappings of security risks for each 
space.  
According to our model, Figure 2a shows that both 
learner and data spaces are characterized by five 
different vulnerabilities or attacks, hence K=M=5, 
whereas the infrastructure space is characterized by 

N=4. We point out that not all the vulnerabilities can be 
feasible for an attacker, e.g., due to a lack of skills. 
However, when blended in the learning application, an 
attacker can “move” through spaces to find an 
exploitable vulnerability. As an example, penetrating 
into a host to exfiltrate sensitive data requires to being 

able to attack the I space, i.e., to void the security 
framework of the operating system. The attacker can 
act on D by collecting data from social media and 
obtain sensitive bits via social engineering on L. The 
leaked information can be used to craft a dictionary to 
make password cracking feasible (Bonneau, 2012), 
hence granting access to an inaccessible i-th component 
of the I space as shown in Figure 2b. We point out that 
this corresponds to mix different privacy and security 
threats and leads to an attack only feasible in the space 
C. In our model, this is quantitatively denoted as 
considering J=15, which is greater than the sum of the 
pseudo-cardinality of each space owing to the password 
cracking attack. In real-world usages, J should be 
considered as a sort of weight, rather than a strict 
indicator of the number of real vulnerabilities. In fact, 
precisely enumerating all the threats affecting a given 
module or technology is usually unfeasible. In practice, 
at design time, J has to be considered carefully by both 
instructional designers and developers. It can help to 
quantify the (in)security of the applications and, for 
example, reserve an adequate budget.  
 

 

 
 

Figure 2 – Toy example: the different security issues in the relevant spaces. 

 

 

 
Figure 2 – Toy example: the different security issues in the relevant spaces. 
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In the following, we will characterize each space by 
surveying the related literature with emphasis on 
hazards addressing the joint usage of learning 
applications and smart city technologies. For the sake 
of brevity, this paper does not cover “plain” 
cybersecurity threats, which have been already 
investigated, see, e.g., the recent work by Humayed et 
al. (2017) on issues of cyber-physical systems and IoT 
technologies. 

3. Learner Space 

The learner space L is where the learning process 
happens. It can rely upon mobile and ubiquitous 
learning paradigms as well as lifelong learning 
strategies, or exploit novel solutions such as augmented 
reality. 
Even if not specifically addressing a smart city 
scenario, the work by Bellekens et al. (2016) confirms 
that the majority of e-learning users do not have a clear 
understanding of risks and threats associated with the 
use of computing and network technologies. This may 
lead to major pitfalls, as users can be prone to social 
engineering attacks, poorly configure their accounts, 
introduce additional fragilities due to a BYOD policy 
or being target for technology-specific attacks as it 
happens in developing countries where satellites are 
often used (Caviglione, 2009).  
Scientific training is a very important application of e-
learning and can show major benefits if applied to smart 
cities, as they offer the access to complex 
infrastructures, collections of raw data coming from the 
field as well as the possibility of observing cause-effect 
relations, e.g., the trend of temperature and humidity in 
a building when parameters of heating, ventilation and 
air conditioning plants are changed. However, data 
must be protected with policies to guarantee the 
ownership while enabling some form of linkage and 
archiving (Demchenko et al., 2013).  
An important advancement made possible by IoT 
technologies concerns the case-based learning and its 
pollination with flipped learning approaches. The smart 
city offers a wide variety of use-cases helping students 
to evaluate data and draw conclusions. This, for 
instance, can be the scenario of using measurements 
from IoT nodes to investigate the impact of pollutants 
on the health of citizens. To this aim, the work by Ali 
et al. (2017) offers many insights applied to the medical 
scenario also highlighting the pervasive nature of 
security. However, this requires to engineer privacy and 
security techniques able to scale from a datacenter 
dimension to the single user device. Unfortunately, full 
scalability properties are difficult to achieve and pose 

different challenges, for instance excessive resource 
requirements or energy drains (Caviglione et al., 2017). 
As envisioned in the work by Coccoli et al. (2017), one 
of the ultimate goals of a smarter university is the 
deployment of ICT solutions to let individuals 
collaborate and cooperate. By using technologies à la 
Industry 4.0, universities can manage assets and 
resources (Coccoli et al., 2016), develop proper access 
information, and design safer campuses and buildings 
(Aldowah et al., 2017). At the same time, this causes 
additional vulnerabilities, as the entire university 
becomes part of the smart city.  
Concerning mobile and ubiquitous learning 
approaches, their adoption in a smart city scheme could 
expose devices of users (e.g., smartphones and tablets) 
to many attacks, including data exfiltration of biometric 
information or geo-tagged data, colluding applications 
and energy draining attacks, DoS, zombification and 
cycle stealing threats, for instance for mining crypto 
currencies (Cabaj et al., 2018).  
As a concluding remark, the plethora of IoT nodes, 
smart devices, home appliances and wireless sensors 
potentially account for a “security tsunami” (Dragoni et 
al., 2016). Indeed, this heavily impacts on the 
technological infrastructure (as discussed in Section 5), 
but also shifts part of the responsibility on students and 
teachers. Therefore, training and technological 
awareness of individuals should be considered a prime 
countermeasure. 

4. Data Space 

The data space D is where information relevant to the 
learning activities circulate. In general, accounts and 
achievements of users are managed by the LMS, while 
learning objects, learning analytics and interactions 
among students have not clear boundaries. For instance, 
measurements coming from sensors network as well as 
open data published by the municipalities can be mixed 
in a smart city. Therefore, data should support standard 
formats for both store and exchange purposes. This 
allows accessing a vast scientific literature and software 
libraries, while reducing vulnerabilities caused by poor 
design or implementations. For instance, the work by 
Bartoli et al. (2011) reviews the different actors that 
concur for the security of a “smart” scenario: the 
resulting technological space is very mixed and 
requires a meticulous management. The work of 
Gharaibeh et al. (2017) offers a holistic view of the 
lifecycle of data within a smart city. In more detail, 
authors observe that interconnected objects demand for 
security and network technologies able to handle data 
collection, processing and dissemination. This poses 
several cross-layer challenges and their negligence may 
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have catastrophic outcomes. In fact, overlaying a 
learning application on a smart city worsens the 
resulting data space, which can be also cross-pollinated 
with bits of information gathered from sources linked 
with the account of the learner. As a consequence, 
leakage of data or functionalities belonging to the 
learning application should not impact on the city or 
partially void the physical security of citizens and users. 
In this vein, a major risk deals with de-anonymization 
attacks and vulnerabilities of users at a physical level. 
Multiple profile fusion attacks can be done in social 
media, and gathered data can be used to empower social 
engineering threats. Attackers posing as a learner or as 
a teacher can manipulate the data from the smart city or 
leak sensitive information such as the physical location 
of hands-on laboratories, or preferred smart devices 
used to perform assignments. 
Another relevant risk concerns data, which could be 
vast and contain composite and untrusted information 
coming from sensors, devices and crowds. Specifically, 
it can be used to hide communication channels, which 
can be used to exfiltrate sensitive bits (e.g., identity of 
learners or their credentials), or to perform profiling 
campaigns, to transform portions of the software 
architecture in elements of a botnet (Wendzel et al., 
2014). 
Concerning multimedia data, a variety of IoT nodes and 
smart devices exploit video information to 
automatically recognize patterns, objects, or shapes. 
Usually, this is done to enforce security or to perform 
some optimizations, for instance by counting people or 
vehicles using a portion of the street. Indeed, video is 
also important for learning purposes and it is a valuable 
tool to quantify the attention of the learner as well as to 
adapt the material or re-think some learning strategies 
(Farhan et al., 2018). The collected information has to 
be properly secured and anonymized as it can leak 
many privacy bits, as well as it can be exploited for 
different attacks, including to feed machine learning 
algorithms to produce fake identities or fraudulent 
photomontages. 
As regards possible pollinations with other applications 
interacting with IoT or wearable sensors, smart e-
learning frameworks share many concerns and pitfalls 
with the e-health universe. Specifically, it is very hard 
to develop a platform able to exercise suitable control 
on the entire “information chain” and security and 
privacy requirements should be properly standardized, 
especially to enforce a privacy and security by design 
approach (Guadagni et al., 2015).  
Lastly, when in the presence of a balkanized space like 
the one characterizing smart city used for learning 
purposes notions dealing with cybersecurity should be 
precisely clarified. For instance, Heath (2014) indicates 
that privacy is an ill-defined concept subject to different 
interpretations causing misbehaviors due to 

incompatible software implementations or unclear 
settings. 

5. Infrastructure Space 

The interactions within the infrastructure space I vary 
according to the specific learning needs. A major driver 
is the LMS, and its evolution from a closed system to a 
more distributed form heavily influences the security 
models to be adopted. In fact, legacy LMSs used 
walled-garden architectures, which handled the mere 
delivery of learning material. In this case, learners 
access the platform via web-based clients retrieving 
data through secured Internet connections or intranet 
accesses. In contrast, today many activities involve 
entities and systems outside the platform and may rely 
on very different technological solutions. In this 
perspective, the most significant is cloud/fog 
computing, which is crucial to develop future e-
learning applications, since it is fundamental to 
implement sensor fusion in a fully connected city 
(Schaffers et al., 2011).  
Cloud and fog computing approaches to support e-
learning applications, including learning analytics 
services, are becoming ubiquitous and populate the 
toolbox of many course architects and software 
developers (Manca et al., 2016; Fernández et al., 2014; 
Caviglione et al., 2011a). Therefore, Education-as-a-
Service or Smart-City-as-a-Service will become 
relevant paradigms in the next future, thus requiring 
proper security levels, including enforcing privacy of 
users and protection of information, typically spread 
over different nations with different laws and 
requirements.  
The e-learning community should also focus on cloud 
security to borrow pros and evaluate cons. For instance, 
Jeong et al. (2013) underline the need of developing 
suitable techniques to encrypt the learning context of 
students and to retain backup data. This accounts for 
ad-hoc security policies, and mechanisms to enforce 
data preservation, service availability, reliability, and 
resiliency. Fortunately, such properties are often built-
in and can be shifted from the e-learning framework 
towards the cloud via proper delegation schemes. At the 
same time, this could lead to additional vulnerabilities 
caused by unsecure network connections or Man-in-
the-Middle (MitM) attacks. Security and privacy 
concerns of the joint use of cloud and e-learning are 
also relevant among students (Arpaci et al., 2015), thus 
the introduction of the smart city factor may lead to 
their exacerbation and should be planned carefully. 
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6. Examples 

In this section, we present three toy examples 
describing how the proposed holistic model can be used 
to drive the evaluation of security and privacy risks of 
a learning applications interacting with the smart city. 
We underline that our approach allows rating the 
overall learning framework to have a guideline for its 
deployment. 

6.1 Example: Real vs Synthetic Data 
Let us consider an application enriching the learning 
experience with data from the field. To this aim, two 
possible paradigms can be used (Caviglione & Coccoli, 
2018): i) the information is made available in an 
asynchronous manner, for instance by the municipality 
via open data, or ii) data is collected “live” with ad-hoc 
devices, such as, sensors and IoT nodes.  
For the case i), risks are primarily limited to the data 
space D. For instance, data can be altered with fake 
information (d1=‘data corruption’), contain hidden 
information (d2=‘steganography attack’) or be not 
properly anonymized thus including sensitive data 
(d3=‘privacy leak’). Obtaining open data usually 
requires downloading some files from a host operated 
by the municipality, hence MitM attacks targeting the I 
space are not likely. Instead the learner can be attacked 
in his/her space L by using corrupted data to alter the 
behavior of the host (e.g., by exploiting a l1=‘buffer 
overflow’). Merging the two spaces can increase the 
number of vulnerabilities, hence making the space C 
less secure. For instance, if the learning application 
implements a hands-on laboratory, the physical security 
of the user can be endangered by poisoning D, i.e., by 
exploiting d1=‘data corruption’, and ask the user to 
move in an unsafe physical space location. This 
corresponds to a new l2 =‘physical security’ threat. As 
a result, J=2+3=5, instead of the original J=4.  
Instead, for the case ii), additional attacks can happen 
in I, which is a relevant part of the overall learning 
experience. In fact, data can still be corrupted or 
manipulated as in the previous case, but also spoofed or 
reduced by making a sensor unreachable, i.e., 
i1=‘spoofing’, or the user can be deceived by injecting 
fake GPS data, hence leading to i2=‘GPS 
manipulation’. Therefore, the overall space C can be 
further augmented with joint threats like, d2+i1 in which 
data is manipulated to exfiltrate information through a 
covert channel (l3=‘exfiltration of data’), or l1+i1 
leading to DoS by means of ad-hoc crafted packets 
generated via IoT nodes. Nevertheless, physical space 
can be also endangered as in the previous case by using 
“live” data instead of static entries in the file. As a 
result, J =(2+3+ 2)+2=9. The course architect can then 
use this indicator to evaluate if his/her team, the budget, 

or the skills of the teacher/learners are adequate with 
respect to the resulting complete space C. 

6.2 Example: Virtualized Environments 
In this example, we consider a learning application 
based on the Platform-as-a-Service paradigm. As 
described by Coccoli et al. (2015), students from 
different universities interact with remote virtual 
machines to complete assessments or to emulate a 
laboratory or hardware facilities not available locally. 
Let us focus on the infrastructure space I. In general, 
for the case of cloud, it is partially outside the control 
of the developer of the learning experience. As a 
consequence, virtual machines can collude to exfiltrate 
data via a local covert channel or exploit shared portion 
of the hypervisor or of the underlying hardware to 
exchange information (Cabaj et al., 2018). This leads to 
a vulnerability i1=‘unintended exchange of data’ and it 
is limited to the PaaS provider. Let us now also consider 
the data space D. A possible implementation of the 
learning experience can use a mixed public/private 
cloud scenario, where personal information of learners 
is locally stored. Another idea could rely upon a fully 
public framework. However, information is stored in 
the cloud and can be exfiltrated by using the 
vulnerability i1. For instance, information to be 
processed by learning analytics algorithms or data to 
perform authentication and accounting may reside in a 
virtual machine and can be leaked towards another one 
under the control of the attacker. Accordingly, this may 
lead to a d1=leak of sensitive data or login credentials. 
As a result, C is characterized by J=2, whereas the 
mixed public/private solution by J=1. Hence, a sort of 
trade-off among fine-grained control of data, 
complexity and cost of the platform has been made. 
space C. 

6.3 Example: Contactless Data 
Another possible example of the interplay among 
different technologies considers the interaction of 
annotated objects (Coccoli & Torre, 2014), which are 
often accessed via RFID, for instance in cultural 
heritage applications or in smart museums (Caviglione 
et al., 2011b). In this case, the museum has to be 
considered a portion of the smart city, and similar usage 
paradigms can be envisaged in other scenarios, e.g., 
when the Near Field Communication (NFC) 
technologies are deployed. By considering our 
modelling, the usage of contactless communications 
may cause additional fragilities in the I space, as the 
data can be intercepted via a MitM attack, i1=‘MitM’. 
This can be mixed with the vulnerabilities in the data 
space, for instance d1=‘plain data’, which happens 
when the information is not properly encrypted. Such a 
case characterizes LMS not supporting end-to-end 
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cyphering of flows, or developers not considering as 
sensitive some bits of information. Hence, d1 can be 
mixed with privacy leaks of the learning space L (such 
as l1=‘learning objects enriched with personal 
information’) and the attacker can exploit i1+d1+l1 to 
perform a user profiling by means of a fusion of all the 
data sensed, including information on “when” and 
“where” it has been collected. As a consequence, 
J=(1+1+1)+1=4, thus: course developers should 
understand the security requirements of data, limit the 
amount of unneeded information exchanged, and avoid 
to allow personal details to travel through the smart 
learning infrastructure. 

7. Conclusions and future work 

In this paper, we have introduced a holistic model to 
identify and classify threats and vulnerabilities 
characterizing e-learning frameworks taking advantage 
of smart cities. As shown, the resulting space is very 
complex and the combination of a multifaceted set of 
technologies multiplies the risks impacting over the 
entire architecture.  
The issues presented for each space, as well as toy 
examples, demonstrated that emerging paradigms and 
applications require to not neglect the complex 
interplay between security and privacy requirements. 
This is especially true for the case of smart cities, since 
it is composed of entities like buildings, which are very 
attractive targets for cybercriminals. Therefore, the e-
learning applications should be hardened as to not 
represent an entry point for the attack or to not behave 
as a trojan. Besides, the impact of IoT is cross-space, 
i.e., it affects all the functional layers. Learners and 
teachers should be also educated in the risks and 
fragilities arising from the use of information coming 
from realistic setups or when interacting with software 
artifacts beyond the control of the course architect. 
Future work aims at refining the model, possibly by 
using formal methods. A relevant part of our research 
deals with the development of suitable algorithms to 
automate the detection of privacy leaks and security 
hazards during the design phase of a smart-capable 
course. 
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