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Our learning-by-teaching environment has students take on the role 
and responsibilities of a teacher to a virtual student named Betty. The 
environment is designed to help students learn and understand science 
topics for themselves as they teach and monitor their agent. This process 
is supported by adaptive scaffolding and feedback through interactions 
with the teachable agent and a mentor agent. This paper discusses the 
results of a comparative study conducted in an 8th-grade science classroom, 
where students received two kinds of metacognitive and learning strategy 
feedback. We analyze student performance and learning gains as a result 
of the intervention. To gain further insight into student learning behaviors 
exhibited during the intervention, we employ a data mining methodology 
incorporating hidden Markov modeling and sequence mining techniques. The 
results illustrate both the effectiveness of the experimental agent feedback 
in encouraging metacognitive learning strategies and the utility of the data 
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mining methodology.

1 Introduction

Cognitive scientists have established that metacognition and self-regulation 
are important components for developing effective learning in the classroom 
and beyond (Pintrich, 2000, Zimmerman, 2001). Brown and Palincsar (1989) 
have demonstrated that younger students can acquire and apply metacognitive 
skills, such as planning and monitoring, through instruction. However, students 
in typical classrooms are rarely provided opportunities to learn and exercise 
these strategies (Paris & Paris, 2001).

Our research team has been developing computer-based-learning environ-
ments that utilize the learning-by-teaching approach in order to foster student 
acquisition of knowledge and development of sophisticated metacognitive stra-
tegies. The system embodies the social constructive learning framework and 
provides students with opportunities for self-directed, open-ended learning in 
the science and mathematics domains (Biswas et al., 2005).

This paper discusses the results of a study conducted in an 8th-grade science 
classroom in which students taught their agent about global climate change. 
One of our goals was to determine the degree to which the agents’ metaco-
gnitive and SRL prompts could help improve student learning. In particular, 
we augmented the existing agent feedback, which promoted metacognitive 
awareness, with more explicitly strategy-oriented feedback from the mentor 
agent. We report results on student learning gains from pre- to post-tests and 
the quality of the maps that they created during the intervention. Further, we 
apply a novel method to describe student learning behaviors and compare them 
between groups. This methodology employs a variety of techniques, including 
constructing hidden Markov models (HMMs) from student activity traces and 
applying sequence mining methods to develop more refined interpretations of 
the students’ learning behaviors. The results of this analysis illustrate important 
differences in learning behaviors between two student groups receiving either 
the metacognitive-awareness or the strategy-augmented feedback.

2 Related Work in Measuring Self-Regulated Learning
Recently, researchers have begun to utilize trace methodologies in order to 

examine the complex temporal patterns of self-regulated learning (Aleven et al., 
2006; Azevedo & Witherspoon, 2009; Biswas et al., 2010; Hadwin et al., 2007; 
Jeong & Biswas, 2008; Zimmerman, 2008). Underlying these approaches is a 
move away from assessing self-regulation as an intrinsic aptitude and, instead, 
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assessing it as dynamic and adaptive event occurrences. By identifying and 
analyzing temporal event sequences from trace data (e.g., student actions in a 
computer-based learning environment), we hope to better understand student’s 
self-regulated learning (SRL) strategies and develop online measurement sche-
mes to provide more adaptive feedback and scaffolding.

In recent years, a number of researchers have had success in applying HMM 
generation techniques to this learning interaction data. Pardos and Heffernan 
(2011) have successfully applied HMMs (in conjunction with a bagged deci-
sion tree classifier) to predict correctness of student answers in computer math 
learning environments. Boyer et al. (2009) have used HMMs for identifying 
strategies and high-level flow in student dialogues with human tutors. Some 
of the more closely related work with HMMs for identification of student 
learning strategies is the HMM clustering technique employed in (Shih et al., 
2010). Performance and learning metrics are used to direct generation of HMM 
collections that predict learning outcomes. In contrast, our technique generates 
HMMs from a set of student activity sequences to build a model that represents 
an aggregated view of the group’s learning behaviors (Biswas et al., 2010).

To identify additional details of students’ learning behaviors, we employ 
sequence mining techniques. Sequential pattern mining (Agrawal & Srikant, 
1995) is used to identify frequent patterns of actions within a group of students. 
However, this can also result in a very large number of frequent patterns, pre-
senting difficulties for effective analysis. To find the most important patterns 
in a comparative analysis between student groups, our methodology combines 
sequential pattern mining with episode discovery/mining to identify differen-
tially frequent patterns. In contrast to sequential pattern mining, episode mining 
(Mannila et al., 1997) defines frequency as the number of times the pattern can 
be matched within a single sequence of actions. Combining sequential pattern 
mining and episode mining, our methodology focuses on learning activity pat-
terns that are used differentially between two groups of students.

3 Betty’s Brain and Self-Regulated Learning Feedback
The Betty’s Brain system implements the learning-by-teaching paradigm 

to help middle school students develop cognitive and metacognitive skills in 
science and mathematics domains (Biswas et al., 2005; Schwartz et al., 2009). 
Students interact with a Teachable Agent (TA), named Betty, and a Mentor 
Agent, named Mr. Davis, to learn and understand a science topic. The system 
includes a set of indexed, hypermedia resources that students can access and 
use at any time while working on the system. Using the visual interface shown 
in Figure 1, students explicitly teach the Betty agent by constructing a causal 
concept map representation (Leelawong & Biswas, 2008).



22

Invited Papers - Vol. 7, n. 2, May 2011|

The system supports five primary types of activities:
Read: students access one of the pages in the resources;1. 
Edit: students add, delete, or modify a concept or link in the map;2. 
Query: students use a template, illustrated in Figure 1, to check their 3. 
teaching by querying Betty;

Explain: students probe Betty’s reasoning by asking her to explain her 4. 
answer to a query;

Quiz: students assess how well they have taught Betty by having her 5. 
take a quiz, which is a set of questions chosen and graded by the mentor 
agent.

Since our middle school students are novices in both the science topics and 
the teaching tasks, the agents provide them with a variety of scaffolds to help 
overcome obstacles they may face in learning and teaching the domain material. 
For example, Betty answers student queries using qualitative reasoning me-
thods through chains of links (Leelawong & Biswas, 2008). If asked, she also 
explains her reasoning through text, speech, and animation schemes. Students 
reflect on Betty’s answers and her explanations, potentially revising their own 
knowledge as they make changes to the concept maps to better teach Betty. 
When students feel they are not making progress, they can seek help from the 
mentor agent by clicking on an “Ask Mr. Davis” button.

Fig. 1 - Betty’s Brain system with query window.
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In particular, the agent feedback and dialogues focus on metacognitive 
awareness and strategies related to knowledge construction and monitoring 
(Biswas et al., 2010). For knowledge construction (i.e., using the resources to 
acquire knowledge and structure it in a causal map), the feedback addresses 
two key types of self-regulation strategies: (i) information seeking, in which 
students study and search available resources in order to gain missing domain 
information or remediate existing knowledge, and (ii) information structuring, 
in which students structure the information by causal and taxonomic relation-
ships to build and revise their causal concept maps. The agent feedback also 
addresses two types of monitoring strategies: (i) checking, where students use 
the query or the quiz features to test the correctness of their concept map, 
and (ii) probing, a stronger monitoring strategy, where students systematically 
analyze their map in greater detail, by following the causal reasoning steps 
generated by the agent to locate potential errors in the maps. Proper guidance 
(i.e., relevant and timely feedback) provides opportunities to help the students 
develop better learning strategies.

3.1 Classroom Study
We recently performed a study with 49 8th-grade students in a middle Ten-

nessee science classroom. At the beginning of the study, students were introdu-
ced to the science topic (global climate change) by the classroom teacher, and 
then provided an overview of causal relations and concept maps with hands-
on system training by the researchers. For the next five days, students taught 
their agent about climate change and received feedback from both agents with 
minimal intervention by the teachers and the researchers.

In both the control and experimental conditions, students received feedback 
on how much their agent had learned by asking her questions and getting her to 
take quizzes that were graded by the mentor agent. In both conditions, students 
also received a variety of feedback from the agents to promote metacognitive 
awareness and the use of metacognitive strategies during learning. For example, 
as the students taught Betty, occasionally she would remark that the relation 
implied by a link between two concepts did not make sense to her, and that the 
students should check to see if they were teaching her correctly (i.e., the student 
should monitor their own learning). Mr. Davis similarly provided spontaneous 
metacognitive awareness feedback, which was triggered by the students’ recent 
activities or the state of their causal map (Biswas et al., 2010).

The difference between the two conditions was in the additional feedback 
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providing explicit advice on learning strategies that students received from 
the mentor in the experimental condition. In the control condition the mentor 
feedback was quite general, and provided as short statements, for example, 
“You should check if Betty’s explanations are correct by comparing them to the 
information in the resources.” The purpose of this feedback was to provide cues 
to help students think of strategies to improve their own learning processes. 
In the experimental condition, this feedback was supplemented with extended 
feedback, which suggested specific actions to the student in the context of 
explicit strategies. For example, occasionally when Betty got a quiz question 
wrong due to an incorrect link, Mr. Davis would say, “Betty got this question 
wrong because she does not have a good understanding of how these concepts 
are related. You might want to read the resources related to the links she used to 
see if any of the relationships are wrong,” which is followed by a list of specific 
pages in the resources to read about the relevant concepts and relationships. 
Further the timing and presentation of the experimental feedback was designed 
to be more context-relevant. For example, Mr. Davis kept track of the part of the 
map that had a number of errors, and when the student seemed to be working 
on this part of the map, would point to resources the student should read to find 
out more about concepts and links from that part of the map.

4 Learning Behavior Analysis
We analyzed student learning in the Betty’s Brain system by extending 

standard measures of learning gain and task performance with an exploratory 
data mining methodology that combines HMM generation and sequence mi-
ning techniques. In this section, we describe the major components of our data 
mining methodology and present the results of its application to learning traces 
from the classroom study described in Section 3.1.

4.1 Overall Learning and Performance
For this study, we employ two measures to assess learning gain and task 

performance: (i) normalized gain in scores from pre-test to post-test1, and (ii) 
final map score2, which provides a measure of overall performance in teaching 
the agent. The pre- and post-tests included two kinds of multiple-choice que-
stions: (1) 11 science definition questions, which tested students’ understanding 
of primary concepts and simple relations among concepts; and (2) 16 causal-
reasoning questions, where students were given a simple causal map, and asked 
to answer questions about chains of cause-and-effect in the map. Because the 
1 Normalized learning gain was calculated as: (post - pre)/(max - pre)
2 Map score was computed as the number of correct links (in comparison to the expert map) minus the number of incorrect 

links. The maximum possible map score was 18.



John S. Kinnebrew, Gautam Biswas - Modeling and Measuring Self-Regulated Learning in Teachable Agent Environments

25

students were assigned to the control or experimental condition by section 
instead of academic performance, we control for these differences between 
groups using the Tennessee Comprehensive Assessment Program (TCAP) test 
scores as a measure of prior academic achievement. Table 1 presents the mean 
difference3 between the experimental and control groups in the study.

TABLE 1
MEAN DIFFERENCE (EXPERIMENTAL - CONTROL) 

WITH TCAP AS A COVARIATE

Metric Mean Difference Significance (p) 95% CI
Definition Learning 
Gain -0,200 0,291 [-0,580,0,179]

Causal Learning Gain 1,015 0,002 [0,398,1,632]

Total Learning Gain 0,301 0,085 [-0,044,0,645]

Map Score 7,956 0,000 [3,958,11,954]

The results in Table 1 illustrate statistically significant differences in final 
map scores and casual reasoning learning gain between the control and experi-
mental groups. For both of these metrics, the experimental group outperformed 
the control group, indicating that the experimental feedback helped students 
better understand causal reasoning, as well as build better causal maps. Since 
both groups had access to the same resources and were involved in the same 
map building task, the lack of a significant difference in learning gain for the 
science definition questions is not surprising. Overall, these results illustra-
te the effectiveness of the explicit strategy-oriented feedback provided in a 
context-relevant manner. To analyze how the differences in feedback may have 
affected student learning behaviors and strategies, we employ an exploratory 
data mining methodology on the students’ learning activity sequences in the 
following sections.

4.2 Modeling Learning Behaviors with HMMs
The student activities logged by a learning environment result from a variety 

of internal cognitive/metacognitive states, strategies, and processes used by the 
student. Employing a direct representation of these internal states and strate-
gies with a probabilistic automaton, such as a hidden Markov model (HMM) 
(Rabiner, 1989), has the potential for facilitating identification, interpretation, 
and comparison of student learning behaviors.

Like a student’s mental processes, the states of an HMM are hidden, mea-

3 The difference in means is computed using estimated marginal means from a multivariate linear model with TCAP score as 
the covariate.
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ning that they cannot be directly observed, but they produce observable emis-
sions, such as actions in a learning environment. Together, three sets of proba-
bilities form a complete model: (1) transition probabilities, which determine 
the likelihood of going from one state to another at each step; (2) state output 
probabilities, which define the likelihood of observing different outputs in each 
state; and (3) state initial probabilities, which define the likelihood that a state 
will be the starting state for an output sequence.

Before we can employ HMM and other data mining techniques to the stu-
dent interaction traces, we must process them to convert raw log events into 
categorical actions. We categorize relevant events into the five available action 
types detailed in Section 3. To maintain a balance between minimizing the 
number of distinct actions in the sequences and keeping important context 
information, we employ a measure of the relevance of each action to recent, 
previous actions. Based on this relevance metric we split each categorized 
action into two distinct actions: (1) high relevance and (2) low relevance to 
recent actions (Biswas et al., 2010).

The processed interaction traces can then be used as input to our HMM 
technique. Algorithms for learning an HMM from sequences are well-known 
but require appropriate configuration/initialization parameters for effective use 
(Rabiner, 1989). We have developed an algorithm that addresses these concerns 
in the construction of HMMs from a set of student activity sequences (Jeong 
& Biswas, 2008, Biswas et al., 2010):

Model Initialization: To determine the appropriate number of states for 1. 
the HMM, our algorithm employs the Bayesian information criterion 
(BIC) (Heckerman et al., 1995), which balances a preference for concise 
models (i.e., fewer states) with a preference for better-fitting models 
(i.e., a greater likelihood of the model producing the observed activity 
sequences) (Li & Biswas, 2002). For each group of student interaction 
traces, we also cluster vectors of student activities (from each step in 
the student activity sequences), to find similar sets of activities at dif-
ferent points in the sequences (Biswas et al., 2010). This provides an 
initial model that helps explore a targeted portion of the possible model 
space.

Model Generation: We employ the popular Baum-Welch algorithm 2. 
(Baum et al., 1970) to the initial model and interaction traces to derive 
the optimal group HMM.

State Occurrence Calculation: To determine the prevalence of individual 3. 
states suggested by a generated HMM, we calculate the proportion of 
expected state occurrences (Biswas et al., 2010). This metric employs 
the generated HMMs to calculate an expected value for the proportion 
of individual state occurrences. To maintain its relevance to the trace 
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data and prevent the marginalization of states only occurring near the 
beginning of learning activities (as can happen with a stationary pro-
bability calculation), the expected value is calculated with lengths of 
student interaction traces in the group (Biswas et al., 2010).

Model Interpretation and Comparison: This is the most difficult and 4. 
subjective step in the process of analyzing student activity data through 
HMM generation. We assign meaning to the derived states of the model 
and generate behavior descriptions in terms of the interpreted states, 
transitions, and the proportion of expected state occurrences.

We employed this HMM generation and analysis to identify learning beha-
viors in the control and experimental groups. Based on the resulting state action 
emission probabilities in Figure 3, and using the methods detailed in (Biswas 
et al., 2010), we interpreted the states as representing:

Reading•	 : students are primarily engaged in reading the resources.
Informed editing•	 : students are primarily making informed edits related 
to recent activities, such as editing one area of the map at a time and 
linking their editing to recent reading, querying, and quizzing. 

Uninformed editing•	 : students are primarily making unfocused or uninfor-
med changes to their map, possibly indicating the use of trial-and-error 
and guessing strategies.

Checking•	 : students are querying and quizzing Betty to check the cor-
rectness of their causal maps and are making some changes to their 
map. However, their attempts at checking and editing their map are 
relatively unfocused and uninformed. This state likely corresponds to 
less effective attempts at employing monitoring strategies prompted by 
some of the Mentor agent feedback.

Uninformed editing and checking•	 : students are performing checking 
behaviors like querying and quizzing and are also making a significant 
number of uninformed edits to their map. This state (in the control 
group HMM) is similar to a combination of the uninformed editing and 
checking states (in the experimental group HMM).

Probing•	 : students are using focused queries and quizzes to check the 
correctness of their causal maps and are making informed changes to 
their map. This state likely corresponds to more effective attempts at 
employing monitoring strategies prompted by some of the Mentor agent 
feedback.
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Fig. 2 - Control and experimental group HMM structures.

The HMM results illustrate a similar set of behaviors employed by both the 
control and experimental groups, although the uninformed editing and checking 
behaviors were combined in a single state for the control group. The propor-
tions of expected state occurrences are also relatively similar between the two 
groups. However, there are distinct differences in the patterns in which these 
behaviors were employed, illustrated by the transition probabilities between 
states in Figure 2. The control HMM has a much smaller likelihood (37%) of 
transitioning from informed editing to probing activities compared to the expe-
rimental HMM (63% transition probability). Further, the experimental HMM 
exhibits a higher likelihood of following probing activities with more reading 
(27% versus 14% for the control HMM). Although the groups performed si-
milar total amounts of probing (13% and 12% expected state occurrences for 
the control and experimental HMMs, respectively), as well as similar amounts 
of reading and informed editing, the transition probabilities suggest that the 
experimental group performed these activities in a more systematic fashion. To 
provide a complementary, finer-grained level of analysis, these HMM results 
are augmented with a comparison of frequent learning activity patterns in the 
following section.
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Fig. 3 - Learning activity emissions in HMM states.

4.3 Comparative Sequence Mining
The control and experimental group HMMs in the previous section provide 

an overview of student learning behaviors and illustrate some important diffe-
rences between the two groups. However, these models of learning behavior 
lack detail for some analyses. This issue becomes even more pronounced when 
trying to compare across groups of students. When the HMMs generated for 
two groups contain similar states, it is still possible that those states represent 
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different, although often related, learning strategies. To provide a finer-grained, 
complementary level of analysis, our methodology employs a novel combina-
tion of sequence mining techniques (Kinnebrew & Biswas, In Review).

For this analysis, the sequential pattern mining frequency measure (i.e., how 
many students exhibit the given pattern, called “sequence frequency/support” 
or s-frequency) is employed to identify patterns common to a group of students. 
We employ an s-frequency threshold of 50% to analyze patterns that were 
evident in the majority of either group of students. To quantitatively compare 
patterns across groups, we employ the episode frequency (i.e., the frequency 
with which the pattern is repeated within an interaction trace). For a given 
trace, we refer to this as the “instance frequency/support” or i-frequency. To 
calculate the i-support of a pattern in a group of traces, we use the mean of 
the pattern’s i-support values across all traces in the group. This methodology 
combines the group s-frequency and i-frequency measures to identify diffe-
rentially frequent patterns across two groups of interaction traces (Kinnebrew 
& Biswas, in review).

Applying this comparison to the control and experimental groups in the 
study, we immediately noticed that many of the frequent patterns differed only 
by the number of consecutive reads or edits in the pattern. To improve this 
exploratory analysis, we revised the log pre-processing to distinguish a single 
action from repeated actions, which were condensed to a single “action” with 
the “-MULT” identifier. Using the re-transformed sequences, our comparative 
sequence mining technique allowed us to identify a trend that was not appa-
rent from separately considering s-frequent or i-frequent patterns, which were 
largely the same between the two groups. Table 2 presents the top three diffe-
rentially frequent patterns in four comparison categories (i.e., categorized by 
whether the patterns were s-frequent in one or both groups and in which group 
they were more i-frequent).

TABLE 2
TOP DIFFERENTIALLY FREQUENT PATTERNS

Learning Activity Pattern
i-Support 
(Hi - Lo)

s-Frequent 
Group

Group Trend

EDIT-H-MULT -> READ 6.16 Experimental

Experimental group 
has greater tendency 

to use single reads 
& edits in read-edit 

sequences

READ-MULT -> EDIT-H-MULT -> READ 4.47 Experimental

EDIT-L -> READ 4.00 Experimental

EDIT-H -> READ 2.47 Both

QUIZ-H -> EDIT-H 1.72 Both

READ-MULT -> EDIT-H 1.58 Both
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Learning Activity Pattern
i-Support 
(Hi - Lo)

s-Frequent 
Group

Group Trend

READ-MULT -> QUER-H -0.80 Both

Control group has 
greater tendency to 
use short patterns 
including queries

QUER-H -> QUIZ-H -0.95 Both

EDIT-L -> QUER-H -1.51 Both

QUER-H -> QUER-H -2.16 Control

EDIT-L -> EDIT-L -2.16 Control

QUER-L -> EDIT-L -2.21 Control

This analysis illustrates that many of the patterns that were differentially 
frequent in the experimental group were repeated read-edit patterns. Many 
similar sequences were frequent in the control group, but the differentially 
frequent sequences for the experimental group often included single reads and 
edits, while the control group relied more on multiple reads and edits. There 
are a number of possible explanations for the observed behavior differences 
between the groups. For example, the experimental group students may have 
employed a knowledge construction strategy of reading a small portion of the 
resources and adding a link to their map each time they identified a causal 
relationship. Conversely, the control group students may have engaged in less 
systematic knowledge construction strategies. In particular, they may have 
been less focused and encountered more difficulties during extended series of 
reads and edits.

Some differences in knowledge construction strategies between the two 
groups may also be related to differences in how they combined monitoring 
activities with their reading and editing. Therefore, we extended our compa-
rative sequence mining analysis by using a regular expression constraint to 
focus on monitoring patterns. In particular, we identified interesting results for 
patterns including Query actions, which are important for effective monitoring 
of the knowledge construction and map building process. Table 3 presents 
the top three actions in each comparative category. This analysis illustrates 
that the experimental group tended to use queries before and after read-edit 
sequences. In contrast, the control group had a differential preference for using 
queries before and after individual (uninformed) edits. This provides further 
confirmation of the HMM results that illustrated a difference in transitions 
to and from the probing states in these groups. Overall, these results suggest 
that the experimental group employed monitoring activities, such as queries 
and explanations, more systematically in combination with short sequences of 
reading and editing. Further, the query-read patterns exhibited by the experi-
mental group suggests that they may have used monitoring to identify weak 
points for further exploration with the resources, as well as to confirm their 



32

Invited Papers - Vol. 7, n. 2, May 2011|

current understanding.

TABLE 3
TOP DIFFERENTIALLY FREQUENT PATTERNS INCLUDING QUERIES

Learning Activity Pattern
i-Support 
(Hi - Lo)

s-Frequent 
Group

Group Trend

QUER-L -> READ-MULT -> EDIT-H 1.19 Experimental

Experimental group 
has greater tendency 

to use queries in 
between read-edit 

sequences 

QUIZ-H -> EDIT-H -> QUER-H 0.97 Experimental

QUER-H -> READ-MULT -> EDIT-H-
MULT

0.97 Experimental

READ-MULT -> EDIT-H -> QUER-H -> 
READ-MULT

0.50 Both

EDIT-H -> EDIT-H -> QUER-H 0.50 Both

QUER-H -> READ-MULT 0.44 Both

READ-MULT -> QUER-H -0.80 Both

Control group has 
greater tendency to 
use queries before 

and after uninformed 
edits

QUER-H -> QUIZ-H -0.95 Both

EDIT-L -> QUER-H -1.51 Both

QUER-H -> EXPL-H -2.11 Control

QUER-H -> QUER-H -2.16 Control

QUER-L -> EDIT-L -2.21 Control

Conclusion
In this paper, we presented a comparative study conducted in an 8th-grade 

science classroom, where students received two kinds of metacognitive and 
learning strategy feedback. In order to better understand how the agents’ meta-
cognitive and SRL prompts could help improve student learning, we employed 
two types of metacognitive feedback/dialogues: (1) spontaneous feedback from 
both agents using general statements and questions to promote metacognitive 
awareness and the use of metacognitive strategies, and (2) context-relevant 
advice from the mentor agent suggesting specific actions in terms of explicit 
strategies. The control group received only the first, metacognitive awareness, 
feedback, while the experimental group received both kinds of feedback.

The analysis of student learning gains and performance showed that the 
experimental feedback helped students better understand causal reasoning, 
as well as build better causal maps. To gain further insight into how the ex-
plicitly strategy-oriented feedback affected learning behavior, we presented 
and applied an exploratory data mining methodology incorporating hidden 
Markov modeling and sequence mining techniques. The comparative learning 
behavior results suggested that students in the experimental group combined 
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knowledge construction activities with metacognitive monitoring activities in 
a more systematic and effective fashion than the control group. In particular, 
the experimental group more often used single reads and edits in conjunctions 
with queries to monitor their understanding, which were followed up with 
further reading (e.g., possibly exploring weak points in their understanding by 
re-reading portions of the resources). Overall, these results illustrate both the 
effectiveness of the explicitly strategy-oriented agent feedback in encouraging 
systematic use of metacognitive learning strategies and the utility of the data 
mining methodology for analysis of learning behaviors. 

In future work, we intend to expand upon this research through a variety 
of enhancements to both the agent feedback and the data mining methodolo-
gy. We will increase the length of possible dialogues with the agents to allow 
more targeted and detailed metacognitive feedback. Further, we are working 
on creating a library of interaction trace segments that are representative of 
identified learning strategies for use in online HMM analysis of student ac-
tivities. Online analysis to categorize student activities by comparison with 
this HMM library can facilitate more targeted scaffolding and feedback in the 
Betty’s Brain system.
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