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Student assessment is one of the most critical aspects related to web-based 
learning systems. In this field, the use of on-line questionnaires - based on 
multiple-choice items - is one of the most widespread approaches.
This paper presents a new technique for automatic design of optimal 
questionnaires that uses a Genetic Algorithm for multiple-choice item 
selection, according to the Item Response Theory. 
The experimental results, carried out on both simulated and genuine data, 
confirm the effectiveness of the new approach, that is able to adapt 
questionnaire design to the abilities of a given set of students.
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1 Introduction 
Accurate assessment of learning processes is one of the key aspects in the 

knowledge society. Actually, learning process assessment concerns not only 
the effectiveness of a learning activity on a student’s skill, but it also provides 
feedback to course designers and instructors that can then improve learning 
products and services, as well as determine the most effective organization 
strategies for learning processes (Lan et al., 2011; Romero et al., 2010). 

Recently, along with the spread of learning systems based on Information 
and Communication Technologies (ICT), computer-based student assessment 
is gaining attention since it is considered a fundamental service of Learning 
Management Systems (Alemung et al., 2011; Dimauro et al., 2003; Romero 
et al., 2008; Greco et al., 2006b). Student assessment has both formative and 
summative purposes. formative assessment takes place several times during a 
course and aims to focus on cognitive, social, and motivational aspects of lear-
ning. Summative assessment occurs at the end of a course and aims to evaluate 
the cognitive aspects of learning. It is designed and conducted by the teacher 
and does not take into consideration the learning process (Strijbos et al., 2011; 
Dimauro et al., 2006; Pirlo et al., 2008; Impedovo et al., 2011; Greco et al., 
2006a). 

Whatever purpose is considered, student assessment is rightly considered 
a fundamental part of the learning process and several types of computer-ba-
sed systems for a student’s assessment have been proposed (Lan et al., 2011; 
Romero et al., 2010). The most popular systems use questionnaires based on 
multiple-choice items, in which students are asked to select the best possible 
answer from the choices provided on a list (Kuechler et al., 2003). Multiple-
choice items offer the possibility of generating useful data that can provide a 
better understanding of the learning process (Romero et al., 2009; Impedovo 
et al., 2006). For example, students’ questionnaire data have been successfully 
used for individual target analysis (Yamanishi et al., 2001), for discovering 
the individual needs of the students (Pechenizkiy et al., 2008), for providing 
personalized learning suggestions (Chu et al., 2006), as well as for discovering 
rule patterns (Chen et al., 2009). In addition, multiple-choice items can be ea-
sily integrated into computer-based assessment systems since they support fast 
automatic evaluation and reuse (Kuechler et al., 2003; Romero et al., 2009). 
Unfortunately, little attention has been devoted so far to the questionnaire design 
process. In fact, the design of a questionnaire is a complex task since it requires 
the selection of the set of items most advantageous for assessing the skill level 
of a student (Lan et al., 2011). 

This paper presents a new approach for optimal questionnaire design. The 
approach first uses the Item Response Theory to estimate the item difficulty for 
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a given student class with specific abilities. Successively the approach consi-
ders a genetic algorithm to determine the best set of items to be included in the 
questionnaire for that specific class of students. The basic idea of this paper is 
that the effectiveness of a questionnaire is strictly connected to the students 
for which the questionnaire is designed. In other words, a questionnaire is an 
entity that must be tailored according to the specific characteristics of the class 
of students that must be assessed. 

The organization of the paper is the following. Section 2 presents the pro-
blem of questionnaires design for student assessment, based on Item Response 
Theory. Section 3 presents the genetic algorithm used for automatic question-
naire design. Section 4 presents the experimental results. Section 5 reports the 
conclusion.

2 Item Response Theory for Automatic Item Selection
Item Response Theory is a well-known paradigm of psychometrics that is 

based on the consideration that responses to a set of items can be explained by 
the existence of one or more latent traits, named abilities (van der Linen et al., 
1997). A latent trait, generally represented by the θ symbol, is conceptualized as 
a quantitative trait and is generally scaled to have a mean of zero and a standard 
deviation of one. A main objective in item response modelling is to characterize 
the relation between θ and the probability of item endorsement. This relation is 
typically referred to as the Item Characteristic Curve (ICC) and can be defined 
as the (nonlinear) regression line that represents the probability of endorsing an 
item (or an item response category) as a function of the underlying trait (Fraley 
et al., 2000). Though a complete description of the Item Response Theory is 
beyond the scope of this paper, the interested reader can find a comprehensive 
analysis in the literature (van der Linen et al., 1997; Fraley et al., 2000). For 
the purpose of this work, we have taken into consideration the Two-Parameter 
Logistic Model (2PLM) (Birnbaum et al., 1968). In this case, letting T={t1, t2,…, 
tj…, tM} be a set of items, the probability that an individual with trait level θi 
will endorse item tj is defined as a function of two item parameters: the item 
difficulty parameter βj and the item discrimination parameter αj (Birnbaum et 
al., 1968): 

 
           (1)

where: the difficulty parameter βj represents the level of the latent trait ne-
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cessary for an individual to have a 50% probability of endorsing the item; the 
item discrimination parameter αj represents an item’s ability to differentiate 
between people with contiguous trait levels. 

(a)
 

(b)

Fig. 1. Item Characteristic Curves (ICCs)

Figure 1a shows the ICCs for three items with α1=α2=α3=1 and β1=-1; β2=0; 
β3=+1. Figure 1b shows the ICCs for three items with α1=α2=α3=2 and β1=-1; 
β2=0; β3=+1. It is worth noting that items are not equally informative across the 
entire range of the trait θ. In fact, an item yields the most information when θi 
equals βj. In other words, items are most informative when the item difficulty 
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parameter is perfectly matched to the person’s trait level (van der Linen et al., 
1997; Birnbaum, 1968). Furthermore, in the context of Item Response Theory, 
an item is considered difficult if a high level of ability or knowledge is required 
to answer it correctly. Only individuals with a high degree of knowledge will be 
able to answer the difficult items, and almost everyone will be able to answer 
the easy items. Therefore, the difference Pj(θmax)-Pj(θmin) can be used to estimate 
the extent to which item tj is valuable to assess students in the range [θmin, θmax]: 
the greater the difference Pj(θmax)-Pj(θmin) the better the item tj. Figure 2 shows 
the ICCs of two items t1 and t2. In this case, the results indicated that t1 is better 
than t2 for assessing the students in the range [θmin, θmax], since P1(θmax)-P1(θmin) 
> P2(θmax)-P2(θmin). 

Fig. 2 - Student Estimation by ICCs

Of course, when a set of independent items T={t1, t2,…, tj…, tM} is conside-
red, the probability that an individual with trait level θi will be able to endorse 
all items is defined as (Fraley et al., 2000): 

           (2)

3 Questionnaire Design by Genetic Algorithms
From a broad set of M items, this new technique for automatic questionnaire 

design selects the most profitable subset of N items (N<M) to be included in the 
questionnaire for a certain category of skills. More precisely, let T={t1, t2,…, 
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tj…, tM} be the set of M items available, and S={s1, s2,…, si…, sN} the set of N 
students under consideration. Furthermore, let θi be the i-th student trait ability 
level, for i=1,2,…,N. Following the considerations in the previous section, the 
questionnaire design is here expressed as an optimization problem in which the 
subset of items Q={tip | p=1,2,…,P with (1≤ip≤M and ip≠iq for p≠q)}, must be 
selected to maximize the fitness function: 

 
           (3)

with: 
• θmax=maximum skill value for the set of students 
      (i.e. θmax=max{θi | i=1,2,…,N})          (4a)
• θmin=minimal skill value for the set of students 
      (i.e. θmin=min{ θi | i=1,2,…,N })          (4b)

Thus the optimization process has to select - from the set of items T - the 
subset more suitable for investigating the latent abilities of the set of students 
belonging to the skill range [θmin, θmax].

In this paper, a binary-coded genetic algorithm is used to solve the optimi-
zation problem in eq. (3), since genetic algorithms – as widely discussed in 
the literature - have potential for solving non-linear optimization problems, in 
which the analytical expression of the object function is not known. Moreover, 
genetic algorithms are able to depart from local optima, unlike deterministic, 
gradient–based optimization methods, which tend to converge towards local 
extrema of the object function (Michalewicz, 1996). A complete description of 
genetic algorithms is not provided here, but any reader who is interested can 
find excellent survey papers in the literature (Goldberg, 1989). The following 
describes the genetic algorithm used in our approach (Baeck, 1996).

I) The initial – population Pop={Φ1, Φ2,...,Φκ,...,ΦΝpop} of random indivi-
duals was created. In our tests Npop has been set to 20 since some preliminary 
experiments have shown Npop = 20 is a good trade-off between convergence 
speed of the genetic algorithm and its capability to escape from local extrema. 
In our approach, each individual was a questionnaire Q and it was represented 
by a vector Φk= <h1,h2,...,hj,...,hΜ>, where each gene hj was a Boolean value:

• hj=0 means that j-th item of T (i.e. the item tj) was not included in Q;  
        (5a) 

• hj=1 means that j-th item of T (i.e. the item tj) was included in Q.  
        (5b) 
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For example, let T={t1, t2, t3, t4, t5, t6, t7, t8} be the set of items. The individual 
Φk=<h1, h2, h3, h4, h5, h6, h7, h8>= <1,0,0,1,1,1,0,1> represented the questionnaire 
Q={t1,t4,t5,t6,t8}.

Since P items must be included into the questionnaire Q, the following nor-
malization procedure was performed for each individual Φk:

a) Compute                                                                                              (6a) 
                     





M

j
jhP

1
'

                                                                      

b) If P’>P then select randomly (P’-P) genes equal to 1 and set them to 0 
 if P’ < P then select randomly (P-P’) genes equal to 0 and set them to 1. (6b)

After normalization, the fitness function was computed for each individual 
Φk of the population, according to eq. (3).

II) From the initial - population, the following four genetic operations were 
used to generate the new populations of individuals:

i) Individual Selection. In the selection procedure Npop/2 random pairs of 
individuals were selected for crossover, according to a roulette-wheel strategy. 
This associates a selection probability to each individual. The higher the fitness 
function of the individual, the higher the selection probability (Baeck, 1996).

ii) Crossover. Crossover is a probabilistic process that exchanges information 
between two parent individuals selected for crossover:

<ha
1,ha

2,., ha
ν-1, ha

ν,..,ha
M> and <hb

1,hb
2,...,hb

ν1, hb
ν,...,hb

M>,                        (7a)

for generating two offspring individuals of the next generation:

<ha
1,ha

2,., ha
ν-1, ha

ν,..,ha
M> and <hb

1,hb
2,...,hb

ν1, hb
ν,...,hb

M>.                        (7b)

In our approach, a one-point crossover was used (Baeck, 1996). In this case, 
for each pair of individuals selected for crossover, a random integer ν (1< ν ≤ 
M) was chosen and the child individuals in (7b) were generated as follows: 

• ha
s= ha

s and hb
s= hb

s, if ν < ν;         (8a)
• ha

s= hb
s and hb

s= ha
s, if ν ≥ ν.          (8b)
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For instance, if the individuals 
<ha

1, ha
2, ha

3, ha
4, ha

5, ha
6, ha

7, ha
8>=<1,0,1,1,0,0,1,1> 

and 
<hb

1,hb
2,hb

3,hb
4,hb

5,hb
6,hb

7,hb
8>=<1,1,0,1,0,1,1,0> 

are considered, for s=5 the offspring are 

<ha
1, ha

2, ha
3, ha

4, ha
5, ha

6, ha
7, ha

8>=<1,0,1,1,0,1,1,0> 
and 

<hb
1,hb

2,hb
3,hb

4,hb
5,hb

6,hb
7,hb

8>=<1,1,0,1,0,0,1,1>

iii) Mutation. A mutation operator can be applied to change some of an 
individual’s genes. Mutation is used to prevent falling genetic algorithm into 
local extreme. A uniform mutation operator was applied in this study. Let 
Φk=<h1,h2,...,hΜ> be an individual, the uniform mutation operator changed (in-
verted) each gene of the individual according to a mutation probability, Mut_
prob (Mut_prob=0.02 in our tests). After mutation, in order to ensure that each 
questionnaire contained a number of items equal to P, the normalization proce-
dure performed by eqs 6a,b was then applied to all individuals Φk, k=1,2,…,Pop.

iv) Elitist Strategy. In our approach, an elitist strategy was adopted. From 
the Npop individuals generated by the above operations, one individual was 
randomly removed and the individual with the maximum fitness in the previous 
population was added to the current population (Baeck, 1996).

Operations (i),(ii),(iii),(iv) were then repeated until Niter successive popu-
lations of individuals were generated (Niter=50 in our tests). When the process 
stopped, the optimal questionnaire was obtained by the best individual of the 
last-generated population. 

4 Experimental Results
In order to evaluate the new technique for optimal questionnaire design, 

the experimental tests were carried out on both simulated and real data. Both 
experiments included two steps. In the preliminary step student models (i.e. the 
trait ability level of each student) were estimated. In the test step the optimal 
questionnaire was designed for the specific set of students under consideration. 
For the experiments on simulated data, a suitable software was developed to 
generate the set of MT*N random responses simulating the answers of N of 
students to a set of MT items. Figure 3 shows a screenshot of the software 
interface. In the preparation step, after data simulation, the ICC of each item 
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was evaluated using the 2PLM model and the trait ability level of each student 
was computed. For the purpose, the Marginal maximum likelihood estimation 
was considered, where the hidden student variables are chosen to maximize 
the likelihood of the data, according to the approach proposed in the literature 
(Bock & Aitkin, 1981)

Finally, the skill range of the set of students [θmin, θmax] was determined. In 
the test step, a new set of M items named Full Set (FSM) was generated and 
the optimal questionnaire T*P could be defined by automatically picking out 
the optimal subset of P items from FSM, for the given set of simulated students 
with a range equal to [θmin, θmax]. 

Fig. 3 -The questionnaire simulation procedure (screenshot)

Figure 4 shows the experimental results obtained with the simulation pro-
cedure. In this case, we considered N=30 students and MT=100 items. Succes-
sively, the ability of each student was estimated according to the approach of 
Bock and Aitkin (Bock & Aitkin, 1981) and the skill range [θmin, θmax]=[2.22, 
3.27] of the student set was determined. The test step was carried out using 
the questionnaire FSM of M items (M=50 in our test) and other questionnaires 
obtained by selecting the optimal subset T*P of P items out of M (P=5,10,15 
in our test). In particular, Figure 4a shows the result from the questionnaire of 
M=50 items. Figure 4b,c,d show the results from the questionnaires of M=5, 
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M=10 and M=15 items, respectively. Of course, in order to evaluate the effec-
tiveness of the proposed approach, the ability estimated when using the opti-
mal questionnaire T*P was compared with the average ability determined when 
using the random-generated questionnaires of P items, where item selection was 
performed randomly. In particular, each value Trnd

P reported in Figure 4 is the 
average ability calculated when taking into account 10 questionnaires, each one 
realized by selecting P random items from FSM. 

Similarly, Figure 5 presents the result on real data, for N=34 students. In 
this case, the skill range of the set of students [θmin, θmax] was equal to [1.67, 
3.05]. A Full Set of M=60 items was provided by the teacher and the optimal 
questionnaire T*P was defined by automatically picking out from FSM the op-
timal subset of P items, P=5, 10, 15. In particular, Figure 5a shows the result 
from the questionnaire of M=50 items. Figure 5b,c,d show the results from the 
questionnaires of M=5, M=10 and M=15 items, respectively. Therefore, figure 
5 shows the ability levels estimated through the FSM, T*P and Trnd

P.

Fig. 4 - Experimental Results (Simulated Data)
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Figure 5. Experimental Results (Real Data)

Now, in order to estimate the effectiveness of the questionnaires for student 
assessment we considered the following measures: 

• A_FSQ(i) the ability of the i-th student estimated through the Full Set 
questionnaire FSM of M items;

• A_T*P(i) the ability of the i-th student estimated through the optimal 
questionnaire T*P of P items;

• A_Trnd
P(i) the ability of the i-th student estimated by averaging the abi-

lities determined through 10 random-generated P items questionnaires.
Hence the accuracy of T*P(i) and Trnd

P(i) to assess student ability was esti-
mated, respectively, by the standard deviations:

                    (9a)
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                    (9b)

It is worth noting that the standard Eq. (9a) shows the extent to which the 
assessments carried out by the optimal subsets of P items (for different values 
of P) are different from the assessment obtained when all items are considered. 
Therefore, the lower SD(FSQ_T*P) the most effective is assessment performed 
though the optimal subset of items. Similarly, in Eq. (9b), the standard deviation 
shows to what extent the assessments carried out by using random subsets of 
P items (for different values of P) differs from the assessment obtained when 
all items are considered. Of course, the comparison between SD(FSQ_T*P) 
and SD(FSQ_Trnd

P) reported in Table I provides a useful information about the 
capability of the proposed approach in selecting optimal subsets of items for 
questionnaire design, able to assess students more precisely than using randomly 
selected items.

P SD(FSQ_T*P) SD(FSQ_Trnd
P)

Simulated Data

5 0.25 0.52

10 0.17 0.40

15 0.10 0.29

Real Data

5 0.20 0.51

10 0.14 0.35

15 0.06 0.24

More precisely, applying eqs. (9) to the results on simulated data in Figure 
4 it follows that, for P=5, SD(FSQ_T*5)=0.25 and SD(FSQ_Trnd

5)=0.52. There-
fore, the assessment accuracy of the optimized questionnaire T*5 was found to 
be superior to the accuracy of Trnd5 by 51.9%, on average. Similar results were 
also found for P=10, SD(FSQ_T*10)=0.17 and SD(FSQ_Trnd

10)=0.40. In this case 
the accuracy of the optimized questionnaire outperformed the accuracy of the 
random questionnaires by 57.5%, on average. In addition, when the optimized 
questionnaire was used for P=15, the standard deviation reduced by 65.5% in 
comparison with the standard deviation of random questionnaires, on average. 
In fact, in this case, SD(FSQ_T*15)=0.10 and SD(FSQ_Trnd

15)=0.29. 
Also concerning the tests on real data (reported in Figure 5), the experimental 

results confirmed the evidence obtained using the simulated data. In particular, 
our results found that P=5, SD(FSQ_T*5)=0.20 and SD(FSQ_Trnd

5)=0.51. This 
means that, when the optimized questionnaire was used, the standard devia-
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tion in the assessment of student ability reduced by 60.3% with respect to the 
standard deviation obtained by random questionnaires, on average. Similarly, 
for P=10 we found: SD(FSQ_T*10)=0.14 and SD(FSQ_Trnd

10)=0.35. Therefore, 
the optimized questionnaire could be seen to reduce the standard deviation by 
57.7% when compared to the random questionnaires, on average. Also for P=15, 
when the optimized questionnaire was used, the standard deviation reduced by 
73.6% with respect to the average standard deviation of the assessment obtained 
by the random questionnaires. In fact, in this case, SD(FSQ_T*15)=0.06 and 
SD(FSQ_Trnd

15)=0.24.

Conclusion
Multiple-choice item questionnaires are a widespread approach used for 

student assessment in web-based learning systems. In this domain, the problem 
of optimal questionnaire design is still open.

This paper addresses the problem of questionnaire design for student asses-
sment and presents a new technique for adaptive questionnaire design based on 
Item Response Theory. Therefore, the aim of this work is twofold. First, the pro-
blem of optimal questionnaire design is considered as an optimization problem. 
Second, a genetic algorithm is proposed for optimal questionnaire design and 
its effectiveness is demonstrated. The algorithm automatically selected the best 
set of items for the specific range of ability of the students under consideration. 

The experimental results, carried out on both simulated and genuine data, 
confirm the effectiveness of the new approach, that is able to adapt questionnaire 
design to the abilities of a given set of students.
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