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The dropout rates in the European countries is one of the major issues to 
be faced in a near future as stated in the Europe 2020 strategy. In 2017, 
an average of 10.6% of young people (aged 18-24) in the EU-28 were early 
leavers from education and training according to Eurostat’s statistics. The 
main aim of this review is to identify studies which uses educational data 
mining techniques to predict university dropout in traditional courses. In 
Scopus and Web of Science (WoS) catalogues, we identified 241 studies 
related to this topic from which we selected 73, focusing on what data 
mining techniques are used for predicting university dropout. We identified 
6 data mining classification techniques, 53 data mining algorithms and 14 
data mining tools.
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1 Introduction
One of the goals in the Europe 2020 strategy is to have at least 40% of 

adult (30-34 years-old) complete higher education (Vossensteyn et al., 2015). 
Therefore, in several different field of study there is an increasing interest 
in reducing dropout and improving academic retention in higher education 
approaches for achieving this goal, which is regarded as crucial for building 
the high-level skills useful to foster productivity and social justice in Europe. 
In Europe, according to the 2016 report by the Organization for Economic 
Cooperation and Development (OECD) dropout rates ranged between 30% 
and 50%. In Italy, the enrolment rate of 20-24 years-old is one of the lowest 
among OECD countries (33.7 %, rank 31/40) (OECD, 2016).

Academic retention can be defined as the continuous participation of the 
student in the university’s educational path until its end. Retention can be also 
conceptualized from the point of view of the student (in this case it is called 
persistence) representing the student motivation to achieve his or her academic 
goals, first of all obtaining of the degree (Hagedorn, 2005). Persistence is 
also the period of time in which a student remains enrolled at the university 
and it could be considered as a prerequisite, a necessary condition, even if 
not sufficient, of university success. When students leave university before 
achieving their intended goals, they could be labelled as dropout students. In 
this way, retention and dropout phenomena are then described as two side of 
the same coin; but when “something goes wrong” diverse and more complex 
failure scenarios may occur, which can be summarized as follows:

• Permanent leaving of studies (drop-out), it can be classified into early 
and late drop-out (respectively at the second year of enrolment or in 
subsequent course years).

• Transfer from one bachelor program to another in the same or in another 
university (transfer).

• Different forms of delay (in Italian language fuoricorsismo, out-of-
schooling) that can be defined as a time extension of the forecasted 
time required to obtain the degree.

The general phenomenon that includes this type of criticalities is defined as 
attrition: “the diminution in numbers of students resulting from lower student 
retention” (Hagedorn, 2005, p. 6).

The term dropout, unfortunately, is recognized by Astin (1971), Tinto 
(1987), Bean (1990) and others as one of the more often misused labels for 
an educational descriptor in literature. Bean (ibidem) points out that a dropout 
student could return and transform his or her status in a “non-dropout” one.

Nevertheless, we will use in this review the university dropout definition 



Francesco Agrusti, Gianmarco Bonavolontà, Mauro Mezzini - University Dropout Prediction through Educational Data Mining Techniques: A Systematic Review

163

by Søgaard Larsen & Dansk Clearinghouse (2013, p. 18): “withdrawal from a 
university degree program before it has been completed”.

In this scenario, there is an increasing interest in the early prediction of 
student dropout, trying to predict its rates in the most precise manner possible. 
The main objective of this paper is to provide an overview of the educational 
data mining techniques that have been used to predict dropout rates in studies 
of the last decade.

Educational data mining is the use of data mining (also called knowledge 
discovery in database - KDD) applied in educational field in order to extract 
meaningful information, patterns and relationships among variables stored 
in a huge educational data set (Bala & Ojha, 2012; Koedinger, D’Mello, 
McLaughlin, Pardos, & Rosé, 2015; Mohamad & Tasir, 2013; Romero & 
Ventura, 2007; Shahiri, Husain, & Rashid, 2015). The useful information may 
be used to predict dropout causes and finally to improving student persistence 
preventing identified causes (i.e. providing teachers a dropout student dashboard 
to improve their teaching approach). Previous literature reviews on educational 
data mining have covered different topics such as intelligent tutoring systems, 
learning analytics, student modelling, prediction of student performance and 
several others. But none of these studied the university dropout except one, but 
with a limited time frame and only 67 identified papers (Alban & Mauricio, 
2019).

2 Methodology
In order to perform this review, we considered the procedures described 

by Kitchenham in her technical report called “Procedures for Performing 
Systematic Reviews” (2004). First of all, we proposed three research questions 
in order to determine the aspects that have been developed to predict university 
student dropout, stated as follows:

• What data mining techniques have been used to predict university 
dropout in traditional (face-to-face) courses?

• Which data mining algorithms were used?
• Which data mining tools were used?

Book sections, conference papers and journal articles were reviewed in 
above mentioned catalogues. To identify relevant documents, we have used 
the advanced search engines provided by Scopus and WoS respectively. The 
Scopus query used in advanced search function is described in appendix 1.

Through this query we selected all the English documents that had the 
words: dropout, drop-out, dropping out, attrition, higher education, university, 
college, data mining, neural network, bayesian, artificial intelligence, AI in 
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the title, abstract and keywords. In addition, with the boolean operators we 
excluded the documents that did not respond to the research questions. After 
this step, we applied the selection criteria (Table 1) to refine the final search.

Table 1
SELECTION CRITERIA

Inclusion Exclusion

Documents including data mining-based university dropout 
prediction.
Documents presenting metrics to assess the quality of 
predictive models of university dropout.
Documents answering research questions.

Documents about dropout’s prediction that are not related 
to the university level in attendance (exclusion of primary, 
secondary and postgraduate education and all distance 
learning courses).
Documents that do not use data mining techniques.
Documents that do not report research data and metrics 
and where the methodology and techniques used have not 
been explained

The same methodology has been used for the selection of documents on 
WoS with small differences in the query due to the different syntax of the search 
engine. The WoS query used is described in appendix 1.

3 Identified documents 
The selection process was completed by deleting the duplicate documents 

(listed both on Scopus and WoS) with a result of 73 documents selected: 36 
documents from Scopus and 37 documents from WoS (Table 2). Figure 1 
presents the increasing number of selected studies during timeline (we did not 
specify any time range in the search query, nether on Scopus or WoS). The first 
selected document is from 1999, the last one is from 2019.

It is crucial to notice that the number of selected studies has a notable 
increment since 2014.

Table 2
SELECTED DOCUMENTS

Source Identified documents Selected documents

SCOPUS 144 36

WoS 97 37

TOTAL 241 73
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Fig. 1 - Temporal trend of selected publications.

From the selected documents, we identified three aspects regarding 
university dropout prediction: data mining techniques, algorithms and tools. 
As stated above, data mining technique is part of the process of converting raw 
data into useful information, from data pre-processing to postprocessing of data 
mining results (Tan et al., 2005). We identified six classification techniques: 
Decision Tree, K-Nearest Neighbor, Support Vector Machines, Bayesian 
Classification, Neural Networks, Logistic regression, and on miscellanea class 
for other techniques.

3.1 k-Nearest Neighborhood
The k-Nearest Neighborhood is a simpler classifier based on the idea that an 

object O can be classified by taking the class of the object which is most similar 
to O. First of all we need to find an objective way to measure the similarity. 
This can be accomplished by decoding all the object in the training set as a 
numerical real valued vectors  where n  is the number of features of 
each object. Then we can use any distance function defined in the n-dimensional 
space of reals like for example the euclidean distance function, in order to give 
an objective measure that states how similar two objects are. The object C in 
the training set having the smallest distance to O will be the nearest to O and 
we will give to O its class. Another strategy could be to take the set S of the 
first k objects nearest to O. Then take the class of which most the objects in S 
belong breaking ties arbitrarily. 
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3.2 Decision Tree
Let U={A1,...,An}  be a set of attributes or features of a set Ω of objects. 

Decision Tree (DT) is a directed acyclic rooted tree. To each node i of the 
DT is associated a single attribute Ai of U and a subset of objects in Ω. The 
association to subset of Ω to each node is recursively done as follows. The root 
node contains all the objects in Ω. Let i be internal node and Si be the subset of 
Ω associated to i. For every different value vi of the attribute Ai there is a child 
Cj of i and the set of objects associated to Cj are the object of Si for which the 
value of attribute Ai is Vj. A node is a leaf if the set of objects associated to it 
contains objects all of the same class. The classification of an object O is made 
on the following way. Starting from the root we inspect each node i until we 
reach a leaf. At that point, to O is given the class of the object associated to the 
leaf. At a generic internal node i we inspect the value vj of the attribute Ai of   
O and then, we continue the traverse of the DT in the child Cj of i.

3.3 Bayesian Networks and Bayesian classifiers
Bayesian Networks (BN) are one of the most effective tool for the 

classification task (Pearl, 1988). Let U={A1, ... , An}   be a set of discrete random 
variables. We call the set of all the possible different values the variable Ai can 
take, the domain of Ai. A BN describes a joint probability distribution of the 
set of random variables over U both qualitatively and quantitatively by using a 
directed acyclic graph (DAG) and a set of parameters. Formally a BN B=(G,ʘ) 
where G is a DAG whose vertex set is U and ʘ contains the parameters of 
the network in the form ʘ={ʘ|A є U}  where ʘA = P(A|пA) where пA is the 
set of parents of A in G and P(A| пA) represent the probability distribution of 
A given its parents пA. Based on this, we can decompose the joint probability 
distribution as 

     (1)

Without loss of generality suppose that A1 is the random variable specifying 
the class label of a group of objects. In a naive Bayesian Classifier, a strong 
assumption is made that every distinct attribute Ai and Aj, i,j>1 are conditionally 
independent given A1. Therefore the joint probability distribution of U (1) can 
be expressed as

     

Which simplify greatly the network and the prediction queries.
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3.4 Perceptrons, SVM and Neural Networks
In the brain or in the nervous system of a living organism each neuron is 

composed by a body, called the soma, a set of dendrites and an axon. Both 
dendrites and axon are filaments that extrudes from the soma. The dendrites 
resemble the roots of a tree and act collectively as input to the neuron cell while 
the axon bring a signal to other neuronal cells by using the axon terminals 
called Synapsys. 

 

Fig. 2 - A neuron cell.

We assume that if a neuron has n dendrites then there are n possible different 
signal in input to the neuron and there is only one output signal transported in 
output by the axon to other neurons. If each of the input signals has strength xi, 
i=1,...,n   where xi is a real number, we may assume that the neuron transforms 
each signal by multiplying it with a weight wi. Then the sum of the transformed 
signals can be used by the axon to transmit a signal to other neurons. If we 
denote by     the input signals and by    the weights associated 
to each dendrite the signal the axon will transmit can be computed by the 
following function 

 

  
      (2)

where b is a real number called the bias parameter. What we obtained here 
is sometimes called a perceptron. Clearly a single perceptron can be used as 
a binary classifier. In other words, if we think to a single neuron as a binary 
classifier which can be activated, or it can be deactivated when it receives some 
input x then the perceptron mimics the behavior of a neuron.

Therefore, if we represent an object O by a real value vector x of features 
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then we can use a single perceptron as a classifier in order to recognize if the 
object O belong or not to a particular class. 

While perceptrons can be used as binary classifiers, there are cases in 
which we want to classify an object among different classes. For example, the 
relatively simple nervous system of a bird should be able to classify if an object 
is a car, is an insect or is a tree. In this case we can use a stack of perceptrons 
and obtain what we call a Support Vector Machine (SVM) (Hearst, 1998). If we 
use D perceptrons in an SVM we can imagine that all the perceptrons take the 
same input object but each perceptrons is specialized to be activated only for a 
certain class and not for the other. The function we obtain is a D-dimensional 
vector 

     (3)

where W is a D * n   matrix of real numbers and b is a D-dimensional vector 
of real numbers. The index of the component of y which take the maximum 
value will be taken as the number of the class predicted by the SVM. For 
example, if the possible class are {Car, Insect, Tree} we have that D= 3 and if 
y=(0.2, 6.4, -3.7) then we may conclude that the class with maximum score is 
the class 2 that is x is an insect.

The problem with perceptron and in general with the SVM is that they 
work well if the class of objects are linearly separable, that is if there exists 
for each class a hyperplane that separates the class from all the other classes. 
To overcome the problem of classification when the space of the classes is not 
linearly separable at the end of each perceptron a nonlinear sigmoidal function 
is applied. Then the output so obtained is sent to another perceptron. The output 
produced by the last perceptron can be expressed as

     (4)

where wi is the n-dimensional vector of weights of the i-th perceptron. Such 
type of classifier is called Neural Networks. Cybenko (1989) proved that the 
above formula can be used to compute any classification function. 

A Neural Network is a mathematical object used to roughly mimics the 
functions of the neurons in a nervous system. Contrary to the classic paradigm 
of computer programming, in which the programmer needs to have a complete 
knowledge of the problem to be solved in order to design  a correct algorithm, 
like for example  in (Malvestuto, Mezzini, & Moscarini, 2011; Mezzini, 
2010, 2011, 2012, 2016, 2018; Mezzini & Moscarini, 2015, 2016), in order 
to implement a Neural Network the programmer need not to understand the 
meaning and the mechanism behind the phenomenon to be classified  and uses 
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the Neural Network  as a black box.

4 Results 
Table 3 summarizes the total identified and selected documents by 

classification techniques. Approximately 67% (49 out of 73 documents) used 
Decision tree classifiers. Bayesian Classification hold the second highest 
frequency of use with approximately 49%, then Neural Networks with 
approximately 40% and Logistic regression with approximately 34%. Support 
Vector Machines, Miscellanea and K-Nearest Neighbour are used respectively 
with approximately 23%, 15% and 12%.

Table 3
CLASSIFICATION TECHNIQUES

Techniques Frequency

Decision Tree
[1,3,4,10,11,12,13,15,16,18,19,20,22,24,26,27,28,30,33,38,39,40,43,44,48,49,60,61,62,6
3,64,65,66,69,70,71,72,73,76,82,84,85,86,88,90,91,93,95,98]

49

Bayesian Classification
[3,13,15,17,20,25,27,28,30,34,35,38,39,40,44,46,47,59,60,64,65,67,69,70,71,73,76,78,7
9,81,86,90,93,94,95,98]

36

Neural Networks 
[1,2,5,13,16,18,21,26,27,28,29,38,39,41,42,43,45,64,65,66,73,77,83,85,86,93,94,96,98]

29

Logistic regression
[3,11,15,16,18,20,26,33,45,48,62,64,64,66,69,70,75,79,82,85,86,94,95,97,98]

25

Support Vector Machines
[1,13,18,19,20,21,33,38,39,40,48,71,72,79,85,94,98]

17

Miscellanea
[4,15,43,49,60,65,72,75,82,95,98]

11

K-Nearest Neighbour
[3,19,20,27,28,64,72,95,98]

9

In addition, we have identified the specific algorithms used in the selected 
documents, grouped by classification techniques with the result of 53 algorithms: 
19 for Decision Tree (Table 4), 11 for Bayesian Classification (Table 5), 6 for 
Neural Networks (Table 6), 3 for Logistic regression (Table 7), 4 for Support 
Vector Machines (Table 8), 8 for Miscellanea (Table 9). Instead, we have not 
identified specific algorithms for K-Nearest Neighbour. Unfortunately, not all 
the selected documents cited explicitly the algorithms used.



170

PEER REVIEWED PAPERS - LEARNING ANALYTICS: FOR A DIALOGUE BETWEEN TEACHING PRACTICES AND EDUCATIONAL RESEARCH  
Vol. 15, n. 3, September 2019Je-LKS

Table 4
DECISION TREE ALGORITHMS

Algorithm Frequency

C4.5 (j48) 
[4,13,93,22,27,28,38,24,44,49,60,65,15,71,72,73,76,82,88,91]

20

Random Forest
[3,15,26,33,40,43,62,64,70,71,85,95]

12

C5.0
[3,16,18,24,93,98]

6

CART
[11,15,24,63,49,38]

6

CHAID
[10,61,63,98]

4

ID3
[4,84,93]

3

Random Tree 
[60,49,90]

3

Gradient Boosting Tree
[40,64]

2

ADTree
[65,49]

2

AdaBoost
[20,64]

2

Decision Forest
[94,98]

2

Decision Jungle
[94,98]

2

Gradient Boosted Trees
[40,64]

2

Boosted Decision Tree
[94,98]

2

Decision Table
[39,44]

2

EM5.3
[66]

1

Rpart
[3]

1

Ctree
[3]

1

REPTree
[49]

1
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Table 5
BAYESIAN CLASSIFICATION ALGORITHMS

Algorithm Frequency

Naïve Bayes
[3,13,20,25,27,28,34,38,39,40,44,60,64,65,67,69,70,71,73,76,79,86,90,
93,95]

25

Bayesian Network 
[15,30,34,35,65,81,93]

7

TAN
[17,35,34]

3

K2
[34,35,67]

3

PC
[34,35,67]

3

Bayesian Profile Regression
[78,79]

2

Markov chains
[46,47]

2

Bayes Point Machine
[94,98]

2

Bayesian binary quantile regression
[59]

1

Gaussian Naive Bayes algorithm
[70]

1

AutoClass
[67]

1

Table 6
NEURAL NETWORK ALGORITHMS

Algorithm Frequency

Multilayer perceptron
[5,16,18,29,38,39,45,73,83,77,85]

11

Radial Basis Function
[21,65]

2

Fuzz-ARTMAP neural network
[41,42]

2

Self-organizing map (SOM)
[96]

1

Adaptive Network based Fuzzy Inference System (ANFIS)
[2]

1

Probabilistic neural network
[45]

1
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Table 7
SUPPORT VECTOR MACHINE ALGORITHMS

Algorithm Frequency

Averaged perceptron
[94]

2

Polinomial kernel
[39]

1

RBF kernel 
39]

1

Least-Square Support Vector Classification
[21]

1

Table 8
LOGISTIC REGRESSION ALGORITHMS

Algorithm Frequency

Iterative Logistic Regression
[95]

1

Logit
[15]

1

Generalized Linear Model
[64]

1

Table 9
MISCELLANEA ALGORITHMS

Algorithm Frequency

ONE R
[15,49,60,65]

4

K-means
[4,75,82]

3

JRip
[15,49]

2

Random guess
[95]

1

Gradient boosting machine
[43]

1

Ridor 
[49]

1

Quest
[98]

1

EUSBoost
[72]

1

In order to answer to our third research question (“Which data mining tools 
were used?”) we identified each tool used in selected documents. Data mining 
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tool refers to software used to extract, process and analyze the data. Only 46 
out of 73 selected searches present the tools used, therefore we have identified 
14 tools summarized in Table 10.The results highlight that the most widely 
used tools were WEKA, SPSS and R.

Table 10
DATA MINING TOOLS 

Tool Frequency

WEKA 
[4,13,15,30,49,38,44,60,82,73,86,88,90,91]

14

SPSS 
[1,5,10,16,19,45,61,77,98]

9

R 
[3,24,25,43,59,78,79,85]

8

Rapid Miner 
[1,12,22,60,76]

5

Elvira 
[34,35,67]

3

H2O 
[43,64]

2

SAS 
[66,97]

2

Watson Analytics 
[69,70]

2

Azure Machine Learning
[94,98]

2

Matlab
[2]

1

Orange3 
[60]

1

Statistica 
[83]

1

NeuralWorks Professional II/PLUS 
[45]

1

Conclusion and future developments
This paper presents a systematic literature review on educational data 

mining techniques used to predict university dropout in traditional courses. 
We identified 241 studies related to this topic from which we selected 73 
papers accordingly to above mentioned inclusion and exclusion criteria. We 
identified six classification techniques: Decision Tree, K-Nearest Neighbour, 
Support Vector Machines, Bayesian Classification, Neural Networks, Logistic 
regression (plus one category for minor techniques called “Miscellanea”). 
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The educational data mining technique which presented a higher frequency 
of use is Decision tree (67%), followed by Bayesian Classification (49%), 
Neural Networks (40%) and Logistic regression (34%).

Moreover, we identified 14 data mining tools used in the studies, highlighting 
that the most used ones are WEKA, SPSS and R.

It is of high evidence that university dropout prediction is of elevated interest 
for academic researchers’ community and that highly precision techniques are 
being developed to address this crucial issue. However, we did not find any 
study about dropout and Convolutional Neural Network (CNN), a very efficient 
algorithm more frequently used in image recognition researches.

As further developments we intend to analyse the selected documents more 
in detail, trying to answer to the following questions:

• Which predictive model evaluation metrics were presented in the 
research?

• What are the levels of reliability reached by the techniques presented 
in the research?

In conclusion, this systematic review on predicting dropout rates has 
motivated us to carry out further research to be applied in higher educational 
data mining field in order to monitoring students’ performance in a systematic 
and even more automated way.
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APPENDIX 1

Queries used in Scopus and WoS.

Scopus

(TITLE-ABS-KEY (dropout OR drop-out OR “drop out” OR “dropping out” OR “attrition”) AND TITLE-ABS-KEY 
(“higher education” OR “university” OR “college”) AND TITLE-ABS-KEY (“data mining” OR “neural network” OR 
“bayesian” OR “artificial intelligence” OR “AI”)) AND (EXCLUDE (DOCTYPE, “er”)) AND (LIMIT-TO (LANGUAGE, 
“English”)) AND (EXCLUDE (EXACTKEYWORD, “E-learning”) OR EXCLUDE (EXACTKEYWORD, “MOOCs”) 
OR EXCLUDE (EXACTKEYWORD, “On-line Education”) OR EXCLUDE (EXACTKEYWORD, “On-line Analytical 
Processing”) OR EXCLUDE (EXACTKEYWORD, “Online”) OR EXCLUDE (EXACTKEYWORD, “Virtual Learning 
Environment”) OR EXCLUDE (EXACTKEYWORD, “Image Classification”) OR EXCLUDE (EXACTKEYWORD, “Image 
Processing”) OR EXCLUDE (EXACTKEYWORD, “Images Classification”) OR EXCLUDE (EXACTKEYWORD, “Gene 
Cluster”) OR EXCLUDE (EXACTKEYWORD, “Gene Deletion”) OR EXCLUDE (EXACTKEYWORD, “Gene Ontology”) 
OR EXCLUDE (EXACTKEYWORD, “Genetic Selection”) OR EXCLUDE (EXACTKEYWORD, “Genetic Variation”) 
OR EXCLUDE (EXACTKEYWORD, “Genetics”) OR EXCLUDE (EXACTKEYWORD, “MOOC”) OR EXCLUDE 
(EXACTKEYWORD, “Distance Education”) OR EXCLUDE (EXACTKEYWORD, “Distance Higher Education”) 
OR EXCLUDE (EXACTKEYWORD, “Distance Learning”) OR EXCLUDE (EXACTKEYWORD, “Distance Learning 
Course”) OR EXCLUDE (EXACTKEYWORD, “Open And Distance Learning”) OR EXCLUDE (EXACTKEYWORD, 
“Massive Open Online Course”) OR EXCLUDE (EXACTKEYWORD, “Massive Open Online Course (MOOC)”) OR 
EXCLUDE (EXACTKEYWORD, “Multi-MOOC”) OR EXCLUDE (EXACTKEYWORD, “Multivariate Time Series”) OR 
EXCLUDE (EXACTKEYWORD, “Segmented Images”) OR EXCLUDE (EXACTKEYWORD, “Entrepreneurial Success”) 
OR EXCLUDE (EXACTKEYWORD, “Breast Cancer”) OR EXCLUDE (EXACTKEYWORD, “Immersive Technology”) 
OR EXCLUDE (EXACTKEYWORD, “Web Services”) OR EXCLUDE (EXACTKEYWORD, “Web-based Learning”) OR 
EXCLUDE (EXACTKEYWORD, “Traffic Signs”) OR EXCLUDE (EXACTKEYWORD, “Brain Tumor Segmentation”) 
OR EXCLUDE (EXACTKEYWORD, “Vis-NIRS”) OR EXCLUDE (EXACTKEYWORD, “Tinnitus Dropout”) OR EXCLUDE 
(EXACTKEYWORD, “Amelogenesis Imperfecta”))

WoS 

(TS=(dropout OR drop-out OR “drop out” OR “dropping out” OR “attrition”) AND TS=(“hiher education” OR 
“university” OR “college”) AND TS= (“data mining” OR “neural network” OR “bayesian” OR “artificial intelligence” 
OR “AI”) OR TI=(dropout OR drop-out OR “drop out” OR “dropping out” OR “attrition”) AND TI=(“higher 
education” OR “university” OR “college”) AND TI= (“data mining” OR “neural network” OR “bayesian” OR 

“artificial intelligence” OR “AI”)) AND LANGUAGE: (English)


