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Abstract 
With reference to the theory of the Zone of Proximal Development, the aim of this paper is to describe an intelligent 
tutoring model capable of learning and reproducing intervention rules to make learning experiences based on the use of 
dynamic concept maps more effective. The work starts from DCMapp, a software application for the creation and 
navigation of dynamic concept maps. DCMapp allows to build maps, draw nodes and arcs, upload multimedia contents 
and manage the dynamic visualization of concepts. The use of DCMapp has been shown to improve study times and 
student learning outcomes. The paper proposes the integration of an intelligent tutoring system based on Vygotsky’s theory 
of the Zone of Proximal Development. This system suggests actions to students to maintain learning within their Zone of 
Proximal Development, avoiding boredom and confusion. It is trained through the observation of a human tutor and uses 
artificial neural networks to predict future actions. The goal is to ensure effective and personalized learning, adapting the 
difficulty of the activities to the cognitive and emotional abilities of the learners. 

KEYWORDS: Artificial Intelligence, Neural Network, Dynamic Concept Maps, Zone of Proximal Development (ZPD), e-Learning. 

 

1. Introduction 

In the dynamic landscape of modern education, the 
integration of technology plays a pivotal role in 
enhancing learning experiences. Among these 
technologies, dynamic concept maps have emerged as 
powerful tools, offering visual and interactive 
representations of knowledge that can significantly 
benefit students. This paper builds upon the 
demonstrated advantages of dynamic concept maps, 
particularly through the use of DCMapp, a software 
application designed for the creation and navigation of 
these maps. DCMapp, which is integrated into the e-
Lena platform (a customized version of Moodle), allows 
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users to build maps, draw nodes and arcs, upload 
multimedia content, and manage the dynamic display of 
concepts (Nye, 2023). Previous research has shown that 
the use of DCMapp, employing the DynaMap 
Remediation Approach (DMRA), can act as a 
remediator in teaching and learning processes, leading 
to reduced study times and improved learning outcomes 
for students. 
Despite these benefits, the effectiveness of learning 
experiences can be further enhanced by providing 
personalized guidance that adapts to each student’s 
unique needs. This necessity leads us to the critical role 
of tutoring in learning, and specifically to Intelligent 
Tutoring Systems (ITS), which aim to simulate the 
behaviour of a human tutor to support students (Roll & 
Wylie,2016). A foundational theory guiding the 
development of ITS is Vygotsky’s Zone of Proximal 
Development (ZPD). The ZPD represents an optimal 
learning space where tasks are neither too difficult nor 
too easy, thereby avoiding states of boredom or 
confusion which can lead to distraction, frustration, and 
loss of motivation. Optimal conditions within the ZPD 
are highly individualized and dynamic, shifting with 
each student and learning context. 
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Given the inherent complexity in modelling the vast 
number of states and transitions within dynamic concept 
maps, particularly when a user navigates them, 
traditional rule-based expert systems for ITS become 
challenging to implement. Therefore, this paper 
proposes an adaptive approach for an intelligent tutoring 
system that can learn directly from the observations of a 
human tutor. 
The primary aim of this paper is to describe an intelligent 
tutoring model capable of learning and reproducing 
intervention rules to make learning experiences based on 
the use of dynamic concept maps more effective. 
Specifically, we propose the integration of an intelligent 
tutoring system with DCMapp that leverages artificial 
neural networks to observe and learn from a human 
tutor’s actions. This system will then predict and suggest 
optimal actions to students in real-time, thereby 
maintaining their learning within their individual Zone 
of Proximal Development, preventing boredom and 
confusion, and ensuring effective and personalized 
learning. 
This work lays the foundation for designing an 
intelligent system that, by integrating with modules for 
detecting students’ cognitive and emotional states and 
their individual tolerance limits for difficulty, can adapt 
to personal needs and guarantee truly personalized and 
effective learning pathways. 

2. The adopted methods 

The research described in the paper aligns with the 
principles of Design-Based Research (DBR). It involves 
the iterative development of an intelligent tutoring 
system grounded in educational theory (ZPD), 
implemented within a real-world learning platform 
(DCMapp), and aimed at improving student outcomes 
through adaptive technology. The absence of empirical 
data or a bounded context rules out a case study 
approach, while the emphasis on design, theory, and 
future experimentation strongly supports a DBR 
classification. 

2.1 DCMapp: the tool for dynamic concept maps 
DCMapp is a software application designed and created 
as an integration of the e-Lena platform, an e-learning 
platform obtained by customizing Moodle, the 
renowned framework for the creation of e-learning 
platforms. DCMapp provides different types of access 
that include, in short, the functionality of creating and 
navigating concept maps. It is possible to build concept 
maps, draw nodes and arcs, upload multimedia content, 
manage the dynamic display modes through which 
concepts linked to others can be displayed or hidden 
depending on the needs of the person navigating it (for 
example, displaying one level at a time in a hierarchical 
map and opening the next ones depending on curiosity 
or training needs). This implies that, for the various 
modes of use, there is a different set of functions 
accessible through the graphical interface (see Figure 1). 
If we focus only on one mode of use, namely navigation, 
among the various available functions, we will be able 
to limit the actions that a user may find themselves 
performing. 
Specifically, the possible actions during navigation are 
the following: 

1. Node selection 
2. Content display 
3. Opening child nodes 
4. Closing child nodes 
5. Node dragging 
6. Map dragging. 

The number of actions is therefore limited but must be 
contextualized to the map being navigated and its 
current display form. For example, all closed nodes, all 
open nodes, i.e. the “child” nodes of other nodes 
displayed at the same time, or partially open, i.e. 
providing only parts containing nodes and their children 
displayed. 
That said, it has been verified (Auth.1 & Auth.3, 2021a) 
that dynamic concept maps can act as remediators in the 
teaching and learning process, encouraging, precisely, 
processes of remediation and integration between 
conventional contents such as books and handouts and 

 
Figure 1 - The graphical interface of DCMapp. 
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new types of digital media such as dynamic concept 
maps themselves. Through the use of DCMapp, students 
had access to dynamic concept maps on the topics under 
study, enriched with explanatory contents that they 
explored from time to time during the study by moving 
between the nodes, opening the nodes corresponding to 
the “child” concepts, viewing the uploaded contents, 
observing the relationships and, at the same time, 
studying the textbooks (Auth.1 & Auth.3, 2021b). The 
results of the cited work show that their use has brought 
real benefits both in terms of reducing study times and 
in terms of learning results. 
The advantages of this approach (called DMRA, 
DynaMap Remediation Approach; Auth.1 & Auth.3, 
2021a) could be further enriched if the DCMapp tool 
were integrated with a tutoring system that, by analysing 
each student’s actions in real time, is able to suggest the 
actions to be taken at any time (Ifenthaler & Yau, 2020). 

2.2 Intelligent tutoring and the ZPD 
Since tutoring is a fundamental element in learning, its 
transposition based on the use of computers has been 
addressed in research initiatives (Merrill, 2013; Shin, 
Sutherland, & Norris, 2012). Over the years, moreover, 
many experiments have been conducted on the 
integration of artificial intelligence techniques and 
tutoring systems with the aim of obtaining an aid capable 
of simulating the behaviour of a human tutor and 
supporting the student during his learning activities 
(Brusilovsky, 2006; Peebles & Cooper, 2010), giving 
rise, precisely, to Intelligent Tutoring Systems (ITS). 
Usually, ITS refer to Vygotsky’s theory of the Zone of 
Proximal Development (ZPD, Vygotskij, 1978; 
Wertsch, 1985). In short, the ZPD can be characterized 
from both a cognitive and an emotional point of view. 
From a cognitive point of view, when a student is 
engaged in learning activities, the tasks proposed to him 
should be neither too difficult nor too easy. From an 
emotional point of view, the student should neither be 
bored nor confused. Boredom is a direct consequence of 
tasks that are too simple. Obviously, asking a student to 
perform actions that are too simple inevitably leads to a 
decrease in attention and a feeling of boredom. 
Conversely, confusion is a direct consequence of tasks 
that are too difficult. Asking for complicated actions 
leads participants to be confused. Both boredom and 
confusion can lead to distraction, frustration, and loss of 
motivation. 
Of course, optimal conditions differ for each student, 
and, for the same student, they differ depending on the 
contexts and learning environments. It is possible to 
imagine the ZPD of a student who interacts with a given 
learning environment, as a space consisting of a set of 
states outside of which there are two extremes 
represented by boredom and confusion. 
During learning, the trajectory that the student follows 
among these states is not linear and depends both on his 
abilities and on the stimuli that he receives in terms of 
activities and tasks to be completed. Starting from an 

initial state, choices, or actions of the student himself, 
determine the transition to a new state. 
Attention and memory take on a voluntary and 
controlled connotation by the student when the 
mediation process supports abstraction, synthesis, and 
symbolization. Higher psychic functions are enhanced in 
the space of the ZPD if the activities presented are 
supported by the action of an expert (peer or adult) or by 
any artefact/tool capable of supporting the advancement 
process (Vygotsky, 1934/1997). Effective teaching is 
such when it precedes development, that is, it guides the 
psycho-intellectual functions in the maturation phase. 
For this reason, the minimum threshold exceeded to start 
a mediation that activates the potential for expanding 
intellectual capacities must be considered, moving from 
what the student is able to do to what he or she does not 
yet know how to do (Vygotsky, 1934/1962). In this way, 
knowledge is not fixed, but it is dynamic, and it is 
constructed and redefined every time the student 
interacts with different tools and sources, giving rise to 
active and conscious learning (Vygotsky, 1934/1997; 
1978). 
Starting from the new state reached, it will then be 
possible to move further towards other states until a pre-
established objective is achieved. Starting from a state 
Si it is possible to perform an action aj that determines 
the transition to a new state. So, to clarify the ideas on 
this matter, it is possible to hypothesize a representation 
model in which there is a set of states that characterize a 
student’s learning path until reaching a training 
objective. Alongside these states, there are others that 
can identify, precisely, the states corresponding to 
boredom or confusion (see Figure 2). 
 

 
Moving within the ZPD without “crossing the line” into 
boredom or confusion means ensuring effective and 
efficient learning. The role of a tutor could be 
understood precisely as a “guiding” intervention capable 
of suggesting to the learner the actions to be performed 
from time to time based on the difficulty of the actions 
themselves and the learner’s abilities, in order to allow 
him to reach the learning objective set in the best 
possible way, that is, going through states that are within 

 
Figure 2 - Set of states of the ZPD. 
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his ZPD and avoiding actions that are too simple that 
lead him to a state of boredom, or actions that are too 
complex that lead him to a state of confusion. 
Furthermore, the role of the tutor is also to implement 
corrective measures to return to the ZPD from a state of 
confusion or from a state of boredom (Van de Pol et al., 
2015; Liu & Wang, 2021). 
When working with ITS, two phases must be foreseen: 
the first, in which the intelligent system is trained to 
carry out its role as a tutor; the second, in which the 
system, ready after training, is used to support a learner 
during his learning path. 
The first training phase can follow various algorithmic 
approaches (supervised training, clustering, rules, Fuzzy 
logic, etc.) that depend on the operating logics that you 
want to implement or on the availability of the data to be 
processed. In any case, the first phase is fundamental and 
preparatory to the second phase. 
In the second phase, the ITS must be able to operate 
within a learning environment (i.e. an e-learning 
platform; in this case, DCMapp) analysing the learner’s 
actions, preferably in real time, and intervening as a 
tutor, precisely, when particular events or situations 
occur (Fenza, Orciuoli & Sampson, 2017). 

3. The DCMapp integration project 

3.1 The intelligent system for DCMapp 
Let us now try to contextualize the learning environment 
in which a learner moves and the related states in which 
one can find oneself, when using DCMapp in navigation 
mode (Novak & Cañas, 2020). The state is, therefore, 
what the learner is viewing in the application, it is the set 
of displayed/closed nodes and their arrangement on the 
screen. The actions that determine the transitions from 
one state to another are, in fact, the actions that the user 
can perform on DCMapp. 
Imagine, for example, a map with only the “root” node 
displayed (see Figure 3). The permitted actions are: 1. 
Node selection, 2. Content display, 3. Opening child 
nodes and 5. Node dragging. While instead, if the map 
already displays the root node and two child nodes (see 
Figure 4) that in turn have other child nodes that can be 
displayed, the possible actions are, for the root node, 1. 
Select node, 2. Display content, 4. Close child nodes, 5. 
Drag node and for the other nodes, 1. Select node, 2. 
Display content, 3. Open child nodes and 5. Drag node; 
furthermore, on the entire map it is possible to perform 
the action 6. Drag map. Naturally, as you proceed, the 
possible actions increase with exponential growth 
depending on the nodes displayed and the overall 
situation that the student is experiencing. 

 
Figure 3 - Map with only the root node displayed. 

 

Figure 4 - Map with the root node and two child nodes displayed. 
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Therefore, it is possible to observe many states related 
to the current view and many transitions from the current 
state to other states based on the actions that the user 
performs directly in DCMapp. Since the user-learner has 
the ability to choose the action to perform by 
determining a transition from the current state to a new 
state of the system, a possible integration of an ITS in 
this environment could be aimed at suggesting the action 
to perform based, obviously, on the current state and 
with the intent of keeping the learner in his ZPD. 
However, due to the exponential growth of possible 
actions due in part to the characteristics of the map and 
in part to the actions that the user performs during 
navigation, it is complex to estimate how many states 
and possible transitions there are in the entire system 
considered in order to model an ITS and design its 
operating rules. This means that it is difficult to 
contemplate a priori the possible suggestions to provide 
to the user who navigates based on the actions that he 
has performed, or the state he is in. 
Therefore, an approach to designing the ITS as a rule-
based expert system for which the operating rules are 
defined before it is put into operation would be difficult 
to implement. 
This implies that we need to lean towards adaptive 
approaches that are able to learn directly from a human 
tutor, to adapt to the situation that occurs and to replicate 
what the tutor himself would do to support the learner. 
Let us try to imagine a device that observes a tutor while 
he presents the navigation of a map within DCMapp and 
learns his actions. Therefore, considering DCMapp 
during navigation as a system able to change state 
starting from an initial state and depending on the 
actions performed by the person using it to navigate, the 
whole thing can be traced back to a temporal series of 
states. Each state St at time t is a function of the previous 
state St-1 at time t-1 and of an action at-1 performed by 
the user at time t-1. 

𝑆" = 𝑓(𝑆"&', 𝑎"&') 

The function f depends on the DCMapp application, that 
is, on the functions allowed to the user and on the 
characteristics of the map that the user is navigating. 
After the tutor user has used DCMapp and navigated the 
map by interacting with it and performing actions, there 
will be a series of states that go from an initial state S0 to 
a current state SC, passing through the various states 
corresponding to various moments experienced during 
navigation. 

𝑆+, 𝑆', 𝑆,,… , 𝑆.	 

Imagining this temporal sequence as the sequence of 
reference states, the role of the tutor can be traced back 
to the function of suggesting the next state, given the 
current state. Since the current state can be reached by 
going through various sequences of states, it would be 
preferable to take into account the entire sequence of 

states from S0 to SC, to suggest the action to be performed 
to determine the transition to the next state. The intent of 
the tutor is, in fact, to suggest an action that leaves the 
learner in his ZPD. This therefore implies that the ITS 
must be able to learn and do the same. 
Learning could be based on a set of patterns each 
consisting of sequences of states of length p and the 
action to be performed to determine a transition to a state 
that is still in the ZPD of the learner. 

(𝑆+, 𝑆', 𝑆,,… , 𝑆0&', 𝑎0&') 

(𝑆', 𝑆,, 𝑆1,… , 𝑆0, 𝑎0) 

(𝑆,, 𝑆1, 𝑆2, … , 𝑆03', 𝑎03') 

… 

(𝑆.&0, 𝑆.&03',… , 𝑆.&,, 𝑆.&', 𝑎.&') 

In the first phase, the training of the ITS on these 
sequences should be such as to allow, in the second 
phase, to estimate, given the sequence of the last p states, 
what action could be performed to determine the 
transition to the next state ensuring that the learner 
remains in his ZPD. 
This approach requires three considerations. The first 
concerns the algorithmic technique to be used to train 
the ITS; the second concerns the length p of the patterns 
for training the ITS; the third, finally, concerns the 
effectiveness on different learners who have different 
ZPDs. 
With regard to the algorithmic technique to be used, it 
has already been previously underlined that, given the 
exponential number of states of the system based on the 
navigation of a dynamic conceptual map using 
DCMapp, any technique based on the definition of rules 
is not easily practicable (Russell & Norvig, 2016). 
Therefore, techniques based on adaptive learning 
algorithms (e.g. supervised artificial neural networks) 
appropriately designed to learn the logical relationship 
between each sequence of states and the action to be 
taken remain practicable (Zhang & Lu, 2022). A system 
trained in this way will then be able to offer support, 
when a sequence of states occurs, providing a prediction 
of which action to take (Chen & Chung, 2019). Among 
the adaptive techniques, the one that could be used is 
precisely an artificial neural network. It would have p 
input neurons, each of which acts as a receptor of one of 
the states of the temporal sequence of states crossed and 
a single output neuron that reproduces the action to be 
taken based on the sequence of states detected by the 
input neurons. This network would be trained using as a 
training set, the patterns obtained from the navigation 
carried out by a human tutor. In other words, it would 
involve applying a supervised learning algorithm to a 
neural network and using the trained network as a 
prediction system. Thus, the number of input and output 
neurons is defined (see Figure 5). Its internal structure, 
i.e. the numbers and levels of intermediate neurons (the 
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hidden neurons), would still need to be defined. For this, 
one can rely on statistical analysis techniques performed 
on the available data (the training set) or on heuristics 
regulated by classification experiments conducted on the 
same data by models with a different structure. 

 
Regarding the length p of the patterns for training, we 
fall into a known problem when using intelligent 
systems based on learning algorithms for the prediction 
of historical series. Beyond the statistical analyses that 
can be done with an available training set, it is a good 
idea to carry out, as for the structure of the neural 
network, experiments and comparisons to be able to 
choose the one that works best with full knowledge of 
the facts, having a human tutor as a reference. In any 
case, both for these details and for the underlying 
algorithmic choice, an experimental verification is what 
is needed to confirm or refute the choices made. 
Finally, regarding the effectiveness on different learners 
and therefore on different ZPDs, the reflection is 
decidedly complex since the problem could be addressed 
in several ways. The first is to capitalize on the 
experience of a human tutor and reproduce it in the ITS. 
This means enriching the training set with all the cases 
that concern different students and related situations. A 
practicable approach, not impossible, but decidedly 
expensive. Another possible approach is instead to limit 
the training set to ideal situations that gravitate around 
what the human tutor would show and to address the 
specific cases of individual students by detecting in real 
time, through appropriate indicators, their cognitive and 
emotional state to have feedback on the effectiveness of 
the actions performed and on their actual permanence in 
the proximal development zone. These indicators would 
thus provide signals to be able to intervene with actions 
aimed mainly at recovery: a student who is going outside 
his or her proximal development zone must be corrected 
with a suggestion that makes him or her stay within it; a 
student who has fallen outside his ZPD, must be 
corrected with a suggestion that allows him to re-enter it 
and ensure effective learning. 

Generally, the reference indicator for remaining in the 
ZPD is the difficulty. According to Vygotsky (1978), the 
ZPD is the range between what an individual is able to 
do alone and what he can do with the help of a more 
experienced partner. A task placed within his ZPD is 
sufficiently challenging to stimulate learning, but not so 
difficult as to discourage it. The optimal difficulty 
allows the individual to extend his knowledge and skills, 
with adequate support. In other words, the difficulty acts 
as a catalyst for cognitive growth, pushing the individual 
to overcome his limits and build new knowledge (Wood, 
Bruner, & Ross, 1976). Where it is possible to 
discriminate between more difficult and easier actions, 
an effective learning path is structured with a sequence 
of actions that present a level of difficulty suitable for 
the participant. This means proposing more or less 
difficult actions based on the state in which the learner 
finds himself. 
Having seen which actions are available in DCMapp 
during navigation, with regard to the measure of 
difficulty, it is not so much the action itself that can be 
defined as more or less complex, but rather the 
knowledge that is “discovered” by the learner who 
navigates. The concepts that are represented within the 
map refer to elements of knowledge, to specific 
knowledge, but also the relationships between them 
represent notions, logical links that can be more or less 
complex to understand. While navigating the dynamic 
map, the learner can discover parts relating to concepts, 
can visualize relationships that were previously hidden, 
can visualize the contents relating to the various nodes. 
The learner, by carrying out actions in DCMapp, can 
therefore choose what to visualize and find himself 
represented something that has, in any case, its own 
complexity. 
Each of these elements can be assigned a difficulty. This 
difficulty is therefore the indicator to take into account 
during navigation to verify permanence within the ZPD. 
Imagine that each action of the learner during navigation 
corresponds to the visualization of something that has an 
overall difficulty. For example, there is only one concept 
displayed on the map, or there are multiple concepts with 
relationships between them. The difference in difficulty 
between two states corresponding to the elements 
displayed before and after a completed action could be 
more or less high. This difference should be monitored 
because, if too high, the learner could find himself in a 
state of confusion; if too low, the learner could find 
himself in a state of boredom. Both situations, as 
previously mentioned, are situations that should be 
avoided. The intelligent tutoring system should monitor 
these parameters for each learner and avoid these 
situations. 
But what is missing to complete this picture? What is 
missing is the assessment of each learner’s ability in 
terms of how much overall difficulty, or how much 
variation in difficulty, they can tolerate during 
navigation, in order to avoid limit states and ensure an 
effective learning path that does not go out of the ZPD. 

 
Figure 5 - The artificial neural network that gets 
as input the p previous states and the action and 
returns back as output the next state. 
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Each learner has this aspect as a specific characteristic 
and it refers to the optimal difficulty, that is, the 
appropriately calibrated challenge that stimulates 
learning without demotivating it (Wiggins & McTighe, 
2005). To assess whether a task or activity presents the 
optimal difficulty, it is essential to carefully observe who 
is tackling it. If the student seems bored or distracted, the 
task may be too easy; on the contrary, if they show 
frustration or anxiety, it may be too difficult (Hattie, 
2009). This assessment through observation could be 
usefully enriched by collecting feedback through 
questionnaires or interviews to understand how each 
person perceives the level of challenge (Marzano, 2007). 
This aspect allows us to better define the ZPD and 
translates, in fact, into a pair of limits that should not be 
exceeded during learning, or in our case relating to the 
use of DCMapp, during the navigation of a dynamic 
conceptual map. These limits are a minimum threshold 
below which not to go to avoid falling into boredom and 
overly simple conceptual representations and a 
maximum threshold above which not to go to avoid 
crossing the line into confusion and overly complicated 
conceptual representations. These limits are not static 
and absolute, but dynamic and a function of the state that 
the learner is experiencing. This means that the detection 
could require real-time interactions. Therefore, starting 
from the sequence of reference actions obtained through 
the tutor’s navigation, our ITS should be able to suggest 
the next action to be performed and, in the event that the 
difference in complexity should be beyond the 
thresholds of the individual learner, suggest alternative 
actions that allow him not to exceed these thresholds. 
The ITS should provide, in addition to the action to be 
performed based on the sequence of states, also 
alternative actions that allow for increasing or 
decreasing the overall difficulty of the conceptual 
representation that is being shown to the student. 
On the other hand, what a teacher does when explaining 
something is to adopt simpler definitions and examples 
when he sees his students in difficulty or, vice versa, to 
proceed towards more complex concepts when he 
realizes that his students are following him and are able 
to grasp the meaning of his explanations. 
All of this, therefore, can be addressed by training the 
ITS through a training set consisting of sequences of 
states and actions to be undertaken that are alternatives 
to each other and correspond to different levels of 
difficulty. That is: 

(𝑆+, 𝑆', 𝑆,,… , 𝑆0&', 𝑎0&'
456 , 𝑎0&', 𝑎0&'

780 ) 

(𝑆', 𝑆,, 𝑆1,… , 𝑆0, 𝑎0
456, 𝑎0, 𝑎0

780) 

(𝑆,, 𝑆1, 𝑆2,… , 𝑆03', 𝑎03'
456 , 𝑎03', 𝑎03'

780 ) 

… 

(𝑆.&0, 𝑆.&03',… , 𝑆.&,, 𝑆.&', 𝑎9&'
456 , 𝑎9&', 𝑎9&'

780) 

In each pattern of the training set, there are p states and 
three actions: an action marked with a superscript inf 
that corresponds to making the overall difficulty lower 
than the current one; an action marked with a superscript 
sup that corresponds to making the overall difficulty 
higher than the current one; an action without a 
superscript that corresponds to the action performed by 
the tutor. 
The structure of the intelligent system to be trained on 
this training set changes slightly as the inputs remain p 
while the outputs are now 3. The same considerations 
made previously apply to the choices relating to p, the 
structure, the number of internal neurons and the hidden 
layers. 
 

3.2 The operation of the intelligent system for 
DCMapp 
The operation of the ITS for DCMapp includes, as 
previously mentioned, a training phase and a run-time 
operation phase. The training phase includes a teacher-
tutor who navigates, and the operation phase includes 
the presence of a student who uses DCMapp. 
Let us then imagine the presence of a dynamic 
conceptual map within DCMapp and imagine a teacher-
tutor who, while giving an explanation to his students, 
navigates the map starting from the root node and 
gradually opens the child nodes, viewing the 
relationships and contents. The teacher-tutor, at every 
moment of navigation, must contemplate alternative 
actions that may be simpler or more difficult than the 
one performed. 
All this navigation is traced in terms of system states and 
alternative actions, to be able to prepare the training set 
as described previously. 
Once the training set is ready, it is possible to proceed to 
the training phase. In this phase, the ITS learns which 
actions to perform based on the sequence of states 
observed during navigation. 
Once training is complete, the ITS is ready to be used at 
run-time as an intelligent tutor capable of suggesting to 
each learner, based on the sequence of states 
experienced, what their next action could be and any 
alternative actions that allow them to remain in their 
proximal development zone, or to continue on an 
effective learning path. 
To function at its best for each learner, as a final step, a 
module is needed to detect the learner’s conditions with 
regard to their ability to tolerate the level of complexity 
proposed to them. In short, it is necessary to detect the 
cognitive and emotional state of the learner to deduce 
what their limits of tolerance are with respect to the 
situation they are experiencing. 
This module becomes fundamental because it allows the 
ITS to choose which action to suggest to the learner 
based on simple rules. The idea to be applied can be 
formalized in an operating rule: 
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IF	𝐷𝑒𝑙𝑡𝑎@A"B466 > 𝑆𝑈𝑃𝑙𝑖𝑚𝑖𝑡H 	THEN	 𝑎0
456 

ELSE	IF	𝐷𝑒𝑙𝑡𝑎@A"B466 < 𝐼𝑁𝐹𝑙𝑖𝑚𝑖𝑡H 	THEN	 𝑎0
780 

ELSE	𝑎0 

Where 𝐷𝑒𝑙𝑡𝑎@A"B466 means, given a topic covered, the 
overall difficulty difference of the representation of 
concepts and relations in DCMapp calculated between 
the current state and the immediately preceding state, 
𝑆𝑈𝑃𝑙𝑖𝑚𝑖𝑡H  and 𝐼𝑁𝐹𝑙𝑖𝑚𝑖𝑡H  are respectively the upper 
and lower limits of the learner x regarding the variation 
in difficulty that he is able to tolerate within the topic 
covered. If the overall difficulty difference calculated on 
two consecutive states DeltaTotDiff exceeds the capacity 
of the learner x (i.e. his maximum tolerance limit 
SUPlimitx), it is necessary to lean towards an action 𝑎0

456 
that makes the conceptual representation simpler. 
Conversely, if the overall difficulty difference 
DeltaTotDiff falls below the lower tolerance limit 
INFlimitx, it is necessary an 𝑎0

780 action that makes the 
conceptual representation more complicated and, thus, 
more stimulating.  
The overall architecture of this integrated system is 
shown in Figure 6. 
 

 

4. Conclusions 

This work lays the foundation for the design of an 
intelligent system that, appropriately integrated with 
modules for the detection of the cognitive and emotional 
state of students, can adapt to the individual needs of 
students and ensure effective and personalized learning 
(Fenza, Orciuoli & Sampson, 2017). 
The work described here starts from the use of dynamic 
concept maps through the DCMapp application, 
integrated into the e-Lena platform, to improve learning. 

DCMapp allows the creation and navigation of dynamic 
concept maps, facilitating the integration between 
traditional and digital content. Dynamic concept maps, 
as demonstrated by Marzano and Miranda (2021a), can 
reduce study times, and improve learning outcomes. The 
article proposes the integration of an intelligent tutoring 
system based on Vygotsky’s (1978) theory of the zone 
of proximal development, to suggest optimal actions to 
students while navigating the concept maps. The details 
proposed in this paper can represent the foundation for 
the design and the implementation of this intelligent 
system and become the starting point for a future 
experimentation. 
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