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Abstract

With reference to the theory of the Zone of Proximal Development, the aim of this paper is to describe an intelligent
tutoring model capable of learning and reproducing intervention rules to make learning experiences based on the use of
dynamic concept maps more effective. The work starts from DCMapp, a software application for the creation and
navigation of dynamic concept maps. DCMapp allows to build maps, draw nodes and arcs, upload multimedia contents
and manage the dynamic visualization of concepts. The use of DCMapp has been shown to improve study times and
student learning outcomes. The paper proposes the integration of an intelligent tutoring system based on Vygotsky’s theory
of the Zone of Proximal Development. This system suggests actions to students to maintain learning within their Zone of
Proximal Development, avoiding boredom and confusion. It is trained through the observation of a human tutor and uses
artificial neural networks to predict future actions. The goal is to ensure effective and personalized learning, adapting the
difficulty of the activities to the cognitive and emotional abilities of the learners.
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1. Introduction

In the dynamic landscape of modern education, the
integration of technology plays a pivotal role in
enhancing learning experiences. Among these
technologies, dynamic concept maps have emerged as
powerful tools, offering visual and interactive
representations of knowledge that can significantly
benefit students. This paper builds upon the
demonstrated advantages of dynamic concept maps,
particularly through the use of DCMapp, a software
application designed for the creation and navigation of
these maps. DCMapp, which is integrated into the e-
Lena platform (a customized version of Moodle), allows
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users to build maps, draw nodes and arcs, upload
multimedia content, and manage the dynamic display of
concepts (Nye, 2023). Previous research has shown that
the use of DCMapp, employing the DynaMap
Remediation Approach (DMRA), can act as a
remediator in teaching and learning processes, leading
to reduced study times and improved learning outcomes
for students.

Despite these benefits, the effectiveness of learning
experiences can be further enhanced by providing
personalized guidance that adapts to each student’s
unique needs. This necessity leads us to the critical role
of tutoring in learning, and specifically to Intelligent
Tutoring Systems (ITS), which aim to simulate the
behaviour of a human tutor to support students (Roll &
Wylie,2016). A foundational theory guiding the
development of ITS is Vygotsky’s Zone of Proximal
Development (ZPD). The ZPD represents an optimal
learning space where tasks are neither too difficult nor
too easy, thereby avoiding states of boredom or
confusion which can lead to distraction, frustration, and
loss of motivation. Optimal conditions within the ZPD
are highly individualized and dynamic, shifting with
each student and learning context.
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Given the inherent complexity in modelling the vast
number of states and transitions within dynamic concept
maps, particularly when a wuser navigates them,
traditional rule-based expert systems for ITS become
challenging to implement. Therefore, this paper
proposes an adaptive approach for an intelligent tutoring
system that can learn directly from the observations of a
human tutor.

The primary aim of this paper is to describe an intelligent
tutoring model capable of learning and reproducing
intervention rules to make learning experiences based on
the use of dynamic concept maps more effective.
Specifically, we propose the integration of an intelligent
tutoring system with DCMapp that leverages artificial
neural networks to observe and learn from a human
tutor’s actions. This system will then predict and suggest
optimal actions to students in real-time, thereby
maintaining their learning within their individual Zone
of Proximal Development, preventing boredom and
confusion, and ensuring effective and personalized
learning.

This work lays the foundation for designing an
intelligent system that, by integrating with modules for
detecting students’ cognitive and emotional states and
their individual tolerance limits for difficulty, can adapt
to personal needs and guarantee truly personalized and
effective learning pathways.

2. The adopted methods

The research described in the paper aligns with the
principles of Design-Based Research (DBR). It involves
the iterative development of an intelligent tutoring
system grounded in educational theory (ZPD),
implemented within a real-world learning platform
(DCMapp), and aimed at improving student outcomes
through adaptive technology. The absence of empirical
data or a bounded context rules out a case study
approach, while the emphasis on design, theory, and
future experimentation strongly supports a DBR
classification.

e-Lena daMarr
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2.1 DCMapp: the tool for dynamic concept maps

DCMapp is a software application designed and created
as an integration of the e-Lena platform, an e-learning
platform obtained by customizing Moodle, the
renowned framework for the creation of e-learning
platforms. DCMapp provides different types of access
that include, in short, the functionality of creating and
navigating concept maps. It is possible to build concept
maps, draw nodes and arcs, upload multimedia content,
manage the dynamic display modes through which
concepts linked to others can be displayed or hidden
depending on the needs of the person navigating it (for
example, displaying one level at a time in a hierarchical
map and opening the next ones depending on curiosity
or training needs). This implies that, for the various
modes of use, there is a different set of functions
accessible through the graphical interface (see Figure 1).

If we focus only on one mode of use, namely navigation,
among the various available functions, we will be able
to limit the actions that a user may find themselves
performing.

Specifically, the possible actions during navigation are
the following:
1. Node selection
Content display
Opening child nodes
Closing child nodes
Node dragging
Map dragging.

ARl A

The number of actions is therefore limited but must be
contextualized to the map being navigated and its
current display form. For example, all closed nodes, all
open nodes, i.e. the “child” nodes of other nodes
displayed at the same time, or partially open, i.e.
providing only parts containing nodes and their children
displayed.

That said, it has been verified (Auth.1 & Auth.3, 2021a)
that dynamic concept maps can act as remediators in the
teaching and learning process, encouraging, precisely,
processes of remediation and integration between
conventional contents such as books and handouts and
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Figure 1 - The graphical interface of DCMapp.
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new types of digital media such as dynamic concept
maps themselves. Through the use of DCMapp, students
had access to dynamic concept maps on the topics under
study, enriched with explanatory contents that they
explored from time to time during the study by moving
between the nodes, opening the nodes corresponding to
the “child” concepts, viewing the uploaded contents,
observing the relationships and, at the same time,
studying the textbooks (Auth.1 & Auth.3, 2021b). The
results of the cited work show that their use has brought
real benefits both in terms of reducing study times and
in terms of learning results.

The advantages of this approach (called DMRA,
DynaMap Remediation Approach; Auth.l & Auth.3,
2021a) could be further enriched if the DCMapp tool
were integrated with a tutoring system that, by analysing
each student’s actions in real time, is able to suggest the
actions to be taken at any time (Ifenthaler & Yau, 2020).

2.2 Intelligent tutoring and the ZPD

Since tutoring is a fundamental element in learning, its
transposition based on the use of computers has been
addressed in research initiatives (Merrill, 2013; Shin,
Sutherland, & Norris, 2012). Over the years, moreover,
many experiments have been conducted on the
integration of artificial intelligence techniques and
tutoring systems with the aim of obtaining an aid capable
of simulating the behaviour of a human tutor and
supporting the student during his learning activities
(Brusilovsky, 2006; Peebles & Cooper, 2010), giving
rise, precisely, to Intelligent Tutoring Systems (ITS).
Usually, ITS refer to Vygotsky’s theory of the Zone of
Proximal Development (ZPD, Vygotskij, 1978;
Wertsch, 1985). In short, the ZPD can be characterized
from both a cognitive and an emotional point of view.
From a cognitive point of view, when a student is
engaged in learning activities, the tasks proposed to him
should be neither too difficult nor too easy. From an
emotional point of view, the student should neither be
bored nor confused. Boredom is a direct consequence of
tasks that are too simple. Obviously, asking a student to
perform actions that are too simple inevitably leads to a
decrease in attention and a feeling of boredom.
Conversely, confusion is a direct consequence of tasks
that are too difficult. Asking for complicated actions
leads participants to be confused. Both boredom and
confusion can lead to distraction, frustration, and loss of
motivation.

Of course, optimal conditions differ for each student,
and, for the same student, they differ depending on the
contexts and learning environments. It is possible to
imagine the ZPD of a student who interacts with a given
learning environment, as a space consisting of a set of
states outside of which there are two extremes
represented by boredom and confusion.

During learning, the trajectory that the student follows
among these states is not linear and depends both on his
abilities and on the stimuli that he receives in terms of
activities and tasks to be completed. Starting from an

initial state, choices, or actions of the student himself,
determine the transition to a new state.

Attention and memory take on a voluntary and
controlled connotation by the student when the
mediation process supports abstraction, synthesis, and
symbolization. Higher psychic functions are enhanced in
the space of the ZPD if the activities presented are
supported by the action of an expert (peer or adult) or by
any artefact/tool capable of supporting the advancement
process (Vygotsky, 1934/1997). Effective teaching is
such when it precedes development, that is, it guides the
psycho-intellectual functions in the maturation phase.
For this reason, the minimum threshold exceeded to start
a mediation that activates the potential for expanding
intellectual capacities must be considered, moving from
what the student is able to do to what he or she does not
yet know how to do (Vygotsky, 1934/1962). In this way,
knowledge is not fixed, but it is dynamic, and it is
constructed and redefined every time the student
interacts with different tools and sources, giving rise to
active and conscious learning (Vygotsky, 1934/1997;
1978).

Starting from the new state reached, it will then be
possible to move further towards other states until a pre-
established objective is achieved. Starting from a state
Si it is possible to perform an action ¢ that determines
the transition to a new state. So, to clarify the ideas on
this matter, it is possible to hypothesize a representation
model in which there is a set of states that characterize a
student’s learning path until reaching a training
objective. Alongside these states, there are others that
can identify, precisely, the states corresponding to
boredom or confusion (see Figure 2).
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Figure 2 - Set of states of the ZPD.

Moving within the ZPD without “crossing the line” into
boredom or confusion means ensuring effective and
efficient learning. The role of a tutor could be
understood precisely as a “guiding” intervention capable
of suggesting to the learner the actions to be performed
from time to time based on the difficulty of the actions
themselves and the learner’s abilities, in order to allow
him to reach the learning objective set in the best
possible way, that is, going through states that are within
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his ZPD and avoiding actions that are too simple that
lead him to a state of boredom, or actions that are too
complex that lead him to a state of confusion.
Furthermore, the role of the tutor is also to implement
corrective measures to return to the ZPD from a state of
confusion or from a state of boredom (Van de Pol et al.,
2015; Liu & Wang, 2021).

When working with ITS, two phases must be foreseen:
the first, in which the intelligent system is trained to
carry out its role as a tutor; the second, in which the
system, ready after training, is used to support a learner
during his learning path.

The first training phase can follow various algorithmic
approaches (supervised training, clustering, rules, Fuzzy
logic, etc.) that depend on the operating logics that you
want to implement or on the availability of the data to be
processed. In any case, the first phase is fundamental and
preparatory to the second phase.

In the second phase, the ITS must be able to operate
within a learning environment (i.e. an e-learning
platform; in this case, DCMapp) analysing the learner’s
actions, preferably in real time, and intervening as a
tutor, precisely, when particular events or situations
occur (Fenza, Orciuoli & Sampson, 2017).

3. The DCMapp integration project

3.1 The intelligent system for DCMapp

Let us now try to contextualize the learning environment
in which a learner moves and the related states in which
one can find oneself, when using DCMapp in navigation
mode (Novak & Caiias, 2020). The state is, therefore,
what the learner is viewing in the application, it is the set
of displayed/closed nodes and their arrangement on the
screen. The actions that determine the transitions from
one state to another are, in fact, the actions that the user
can perform on DCMapp.

Imagine, for example, a map with only the “root” node
displayed (see Figure 3). The permitted actions are: 1.
Node selection, 2. Content display, 3. Opening child
nodes and 5. Node dragging. While instead, if the map
already displays the root node and two child nodes (see
Figure 4) that in turn have other child nodes that can be
displayed, the possible actions are, for the root node, 1.
Select node, 2. Display content, 4. Close child nodes, 5.
Drag node and for the other nodes, 1. Select node, 2.
Display content, 3. Open child nodes and 5. Drag node;
furthermore, on the entire map it is possible to perform
the action 6. Drag map. Naturally, as you proceed, the
possible actions increase with exponential growth
depending on the nodes displayed and the overall
situation that the student is experiencing.
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Figure 3 - Map with only the root node displayed.
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Figure 4 - Map with the root node and two child nodes displayed.
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Therefore, it is possible to observe many states related
to the current view and many transitions from the current
state to other states based on the actions that the user
performs directly in DCMapp. Since the user-learner has
the ability to choose the action to perform by
determining a transition from the current state to a new
state of the system, a possible integration of an ITS in
this environment could be aimed at suggesting the action
to perform based, obviously, on the current state and
with the intent of keeping the learner in his ZPD.

However, due to the exponential growth of possible
actions due in part to the characteristics of the map and
in part to the actions that the user performs during
navigation, it is complex to estimate how many states
and possible transitions there are in the entire system
considered in order to model an ITS and design its
operating rules. This means that it is difficult to
contemplate a priori the possible suggestions to provide
to the user who navigates based on the actions that he
has performed, or the state he is in.

Therefore, an approach to designing the ITS as a rule-
based expert system for which the operating rules are
defined before it is put into operation would be difficult
to implement.

This implies that we need to lean towards adaptive
approaches that are able to learn directly from a human
tutor, to adapt to the situation that occurs and to replicate
what the tutor himself would do to support the learner.

Let us try to imagine a device that observes a tutor while
he presents the navigation of a map within DCMapp and
learns his actions. Therefore, considering DCMapp
during navigation as a system able to change state
starting from an initial state and depending on the
actions performed by the person using it to navigate, the
whole thing can be traced back to a temporal series of
states. Each state S; at time ¢ is a function of the previous
state Sr.; at time #-1 and of an action a.1 performed by
the user at time #-1.

S = f(Se-1, 1)

The function f'depends on the DCMapp application, that
is, on the functions allowed to the user and on the
characteristics of the map that the user is navigating.

After the tutor user has used DCMapp and navigated the
map by interacting with it and performing actions, there
will be a series of states that go from an initial state So to
a current state Sc, passing through the various states
corresponding to various moments experienced during
navigation.

S0,51,S, 0, Sc

Imagining this temporal sequence as the sequence of
reference states, the role of the tutor can be traced back
to the function of suggesting the next state, given the
current state. Since the current state can be reached by
going through various sequences of states, it would be
preferable to take into account the entire sequence of

states from So to Sc, to suggest the action to be performed
to determine the transition to the next state. The intent of
the tutor is, in fact, to suggest an action that leaves the
learner in his ZPD. This therefore implies that the ITS
must be able to learn and do the same.

Learning could be based on a set of patterns each
consisting of sequences of states of length p and the
action to be performed to determine a transition to a state
that is still in the ZPD of the learner.

(So» S1,S2s ver Sp_1, Ap_1)

(S1,S2,S3, e Sp) @)

(52,83, S4s s Sp41, Aps1)

(Sc—prSc—p+1> -+ Sc-2,Sc—1,Ac-1)

In the first phase, the training of the ITS on these
sequences should be such as to allow, in the second
phase, to estimate, given the sequence of the last p states,
what action could be performed to determine the
transition to the next state ensuring that the learner
remains in his ZPD.

This approach requires three considerations. The first
concerns the algorithmic technique to be used to train
the ITS; the second concerns the length p of the patterns
for training the ITS; the third, finally, concerns the
effectiveness on different learners who have different
ZPDs.

With regard to the algorithmic technique to be used, it
has already been previously underlined that, given the
exponential number of states of the system based on the
navigation of a dynamic conceptual map using
DCMapp, any technique based on the definition of rules
is not easily practicable (Russell & Norvig, 2016).
Therefore, techniques based on adaptive learning
algorithms (e.g. supervised artificial neural networks)
appropriately designed to learn the logical relationship
between each sequence of states and the action to be
taken remain practicable (Zhang & Lu, 2022). A system
trained in this way will then be able to offer support,
when a sequence of states occurs, providing a prediction
of which action to take (Chen & Chung, 2019). Among
the adaptive techniques, the one that could be used is
precisely an artificial neural network. It would have p
input neurons, each of which acts as a receptor of one of
the states of the temporal sequence of states crossed and
a single output neuron that reproduces the action to be
taken based on the sequence of states detected by the
input neurons. This network would be trained using as a
training set, the patterns obtained from the navigation
carried out by a human tutor. In other words, it would
involve applying a supervised learning algorithm to a
neural network and using the trained network as a
prediction system. Thus, the number of input and output
neurons is defined (see Figure 5). Its internal structure,
i.e. the numbers and levels of intermediate neurons (the
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hidden neurons), would still need to be defined. For this,
one can rely on statistical analysis techniques performed
on the available data (the training set) or on heuristics
regulated by classification experiments conducted on the
same data by models with a different structure.

Sp+1

Next state

Output

(51,52, S3, ) Sp, ap) Input
p previous states and

the action

Figure 5 - The artificial neural network that gets
as input the p previous states and the action and
returns back as output the next state.

Regarding the length p of the patterns for training, we
fall into a known problem when using intelligent
systems based on learning algorithms for the prediction
of historical series. Beyond the statistical analyses that
can be done with an available training set, it is a good
idea to carry out, as for the structure of the neural
network, experiments and comparisons to be able to
choose the one that works best with full knowledge of
the facts, having a human tutor as a reference. In any
case, both for these details and for the underlying
algorithmic choice, an experimental verification is what
is needed to confirm or refute the choices made.

Finally, regarding the effectiveness on different learners
and therefore on different ZPDs, the reflection is
decidedly complex since the problem could be addressed
in several ways. The first is to capitalize on the
experience of a human tutor and reproduce it in the ITS.
This means enriching the training set with all the cases
that concern different students and related situations. A
practicable approach, not impossible, but decidedly
expensive. Another possible approach is instead to limit
the training set to ideal situations that gravitate around
what the human tutor would show and to address the
specific cases of individual students by detecting in real
time, through appropriate indicators, their cognitive and
emotional state to have feedback on the effectiveness of
the actions performed and on their actual permanence in
the proximal development zone. These indicators would
thus provide signals to be able to intervene with actions
aimed mainly at recovery: a student who is going outside
his or her proximal development zone must be corrected
with a suggestion that makes him or her stay within it; a
student who has fallen outside his ZPD, must be
corrected with a suggestion that allows him to re-enter it
and ensure effective learning.

Generally, the reference indicator for remaining in the
ZPD is the difficulty. According to Vygotsky (1978), the
ZPD is the range between what an individual is able to
do alone and what he can do with the help of a more
experienced partner. A task placed within his ZPD is
sufficiently challenging to stimulate learning, but not so
difficult as to discourage it. The optimal difficulty
allows the individual to extend his knowledge and skills,
with adequate support. In other words, the difficulty acts
as a catalyst for cognitive growth, pushing the individual
to overcome his limits and build new knowledge (Wood,
Bruner, & Ross, 1976). Where it is possible to
discriminate between more difficult and easier actions,
an effective learning path is structured with a sequence
of actions that present a level of difficulty suitable for
the participant. This means proposing more or less
difficult actions based on the state in which the learner
finds himself.

Having seen which actions are available in DCMapp
during navigation, with regard to the measure of
difficulty, it is not so much the action itself that can be
defined as more or less complex, but rather the
knowledge that is “discovered” by the learner who
navigates. The concepts that are represented within the
map refer to elements of knowledge, to specific
knowledge, but also the relationships between them
represent notions, logical links that can be more or less
complex to understand. While navigating the dynamic
map, the learner can discover parts relating to concepts,
can visualize relationships that were previously hidden,
can visualize the contents relating to the various nodes.
The learner, by carrying out actions in DCMapp, can
therefore choose what to visualize and find himself
represented something that has, in any case, its own
complexity.

Each of these elements can be assigned a difficulty. This
difficulty is therefore the indicator to take into account
during navigation to verify permanence within the ZPD.
Imagine that each action of the learner during navigation
corresponds to the visualization of something that has an
overall difficulty. For example, there is only one concept
displayed on the map, or there are multiple concepts with
relationships between them. The difference in difficulty
between two states corresponding to the elements
displayed before and after a completed action could be
more or less high. This difference should be monitored
because, if too high, the learner could find himself in a
state of confusion; if too low, the learner could find
himself in a state of boredom. Both situations, as
previously mentioned, are situations that should be
avoided. The intelligent tutoring system should monitor
these parameters for each learner and avoid these
situations.

But what is missing to complete this picture? What is
missing is the assessment of each learner’s ability in
terms of how much overall difficulty, or how much
variation in difficulty, they can tolerate during
navigation, in order to avoid limit states and ensure an
effective learning path that does not go out of the ZPD.
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Each learner has this aspect as a specific characteristic
and it refers to the optimal difficulty, that is, the
appropriately calibrated challenge that stimulates
learning without demotivating it (Wiggins & McTighe,
2005). To assess whether a task or activity presents the
optimal difficulty, it is essential to carefully observe who
is tackling it. If the student seems bored or distracted, the
task may be too easy; on the contrary, if they show
frustration or anxiety, it may be too difficult (Hattie,
2009). This assessment through observation could be
usefully enriched by collecting feedback through
questionnaires or interviews to understand how each
person perceives the level of challenge (Marzano, 2007).

This aspect allows us to better define the ZPD and
translates, in fact, into a pair of limits that should not be
exceeded during learning, or in our case relating to the
use of DCMapp, during the navigation of a dynamic
conceptual map. These limits are a minimum threshold
below which not to go to avoid falling into boredom and
overly simple conceptual representations and a
maximum threshold above which not to go to avoid
crossing the line into confusion and overly complicated
conceptual representations. These limits are not static
and absolute, but dynamic and a function of the state that
the learner is experiencing. This means that the detection
could require real-time interactions. Therefore, starting
from the sequence of reference actions obtained through
the tutor’s navigation, our ITS should be able to suggest
the next action to be performed and, in the event that the
difference in complexity should be beyond the
thresholds of the individual learner, suggest alternative
actions that allow him not to exceed these thresholds.
The ITS should provide, in addition to the action to be
performed based on the sequence of states, also
alternative actions that allow for increasing or
decreasing the overall difficulty of the conceptual
representation that is being shown to the student.

On the other hand, what a teacher does when explaining
something is to adopt simpler definitions and examples
when he sees his students in difficulty or, vice versa, to
proceed towards more complex concepts when he
realizes that his students are following him and are able
to grasp the meaning of his explanations.

All of this, therefore, can be addressed by training the
ITS through a training set consisting of sequences of
states and actions to be undertaken that are alternatives
to each other and correspond to different levels of
difficulty. That is:

inf sup
(S0, S1,S2, s Sp1, A1, Ap—1, A7)

inf sup
(51,52,53,...,Sp,ap ) Ay Ay )

inf sup
(852,53, 84 +»Sps1s Qi1 Apr1s Ay

inf sup
(SC—p'SC—p+1' 'SC—Z'SC—lﬂ ac—y ac-1, ac—1

In each pattern of the training set, there are p states and
three actions: an action marked with a superscript inf
that corresponds to making the overall difficulty lower
than the current one; an action marked with a superscript
sup that corresponds to making the overall difficulty
higher than the current one; an action without a
superscript that corresponds to the action performed by
the tutor.

The structure of the intelligent system to be trained on
this training set changes slightly as the inputs remain p
while the outputs are now 3. The same considerations
made previously apply to the choices relating to p, the
structure, the number of internal neurons and the hidden
layers.

3.2 The operation of the intelligent system for
DCMapp

The operation of the ITS for DCMapp includes, as
previously mentioned, a training phase and a run-time
operation phase. The training phase includes a teacher-
tutor who navigates, and the operation phase includes
the presence of a student who uses DCMapp.

Let us then imagine the presence of a dynamic
conceptual map within DCMapp and imagine a teacher-
tutor who, while giving an explanation to his students,
navigates the map starting from the root node and
gradually opens the child nodes, viewing the
relationships and contents. The teacher-tutor, at every
moment of navigation, must contemplate alternative
actions that may be simpler or more difficult than the
one performed.

All this navigation is traced in terms of system states and
alternative actions, to be able to prepare the training set
as described previously.

Once the training set is ready, it is possible to proceed to
the training phase. In this phase, the ITS learns which
actions to perform based on the sequence of states
observed during navigation.

Once training is complete, the ITS is ready to be used at
run-time as an intelligent tutor capable of suggesting to
each learner, based on the sequence of states
experienced, what their next action could be and any
alternative actions that allow them to remain in their
proximal development zone, or to continue on an
effective learning path.

To function at its best for each learner, as a final step, a
module is needed to detect the learner’s conditions with
regard to their ability to tolerate the level of complexity
proposed to them. In short, it is necessary to detect the
cognitive and emotional state of the learner to deduce
what their limits of tolerance are with respect to the
situation they are experiencing.

This module becomes fundamental because it allows the
ITS to choose which action to suggest to the learner
based on simple rules. The idea to be applied can be
formalized in an operating rule:
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IF Deltar,;piz; > SUPlimit, THEN a,
ELSE IF Deltaropiry < INFlimit, THEN a,®
ELSE a,

Where Deltar,qpify means, given a topic covered, the
overall difficulty difference of the representation of
concepts and relations in DCMapp calculated between
the current state and the immediately preceding state,
SUPlimit, and INFlimit, are respectively the upper
and lower limits of the learner x regarding the variation
in difficulty that he is able to tolerate within the topic
covered. If the overall difficulty difference calculated on
two consecutive states Deltaroniyy exceeds the capacity
of the learner x (i.e. his maximum tolerance limit
SUPlimity), it is necessary to lean towards an action a;"f
that makes the conceptual representation simpler.
Conversely, if the overall difficulty difference
Deltarpiy falls below the lower tolerance limit

INFlimits, it is necessary an a,"" action that makes the

conceptual representation more complicated and, thus,
more stimulating.

The overall architecture of this integrated system is
shown in Figure 6.

Tutor Learner .
Cognitive and

p— emotional sta
Actions

Training set

Suggestions

Learner limits

L Run-Time
Training

Tutoring

Figure 6 - The operation of the integrated
DCMapp and ITS system.

4. Conclusions

This work lays the foundation for the design of an
intelligent system that, appropriately integrated with
modules for the detection of the cognitive and emotional
state of students, can adapt to the individual needs of
students and ensure effective and personalized learning
(Fenza, Orciuoli & Sampson, 2017).

The work described here starts from the use of dynamic
concept maps through the DCMapp application,
integrated into the e-Lena platform, to improve learning.

DCMapp allows the creation and navigation of dynamic
concept maps, facilitating the integration between
traditional and digital content. Dynamic concept maps,
as demonstrated by Marzano and Miranda (2021a), can
reduce study times, and improve learning outcomes. The
article proposes the integration of an intelligent tutoring
system based on Vygotsky’s (1978) theory of the zone
of proximal development, to suggest optimal actions to
students while navigating the concept maps. The details
proposed in this paper can represent the foundation for
the design and the implementation of this intelligent
system and become the starting point for a future
experimentation.
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