
AN AUTOMATED 
ASSESSMENT TOOL OF 
FLOWCHART PROGRAMS 
IN INTRODUCTORY 
PROGRAMMING COURSE 
USING GRAPH MATCHING
Rym Aiouni1,2

Anis Bey1,2

Tahar Bensebaa1 

1Computer Science Department, Laboratory of Research in 
Computer Science (LRI), Badji Mokhtar-Annaba University, Annaba, 
Algeria 
2 Ecole Préparatoire en Sciences Economiques, Annaba, Algeria
 
Keywords: Automatic Assessment Tool, Learning and teaching Programming, Algorithms, 

Graph matching, Similarity.

PEER REVIEWED COMMUNICATIONS

Assessing students’ programs by hand constitutes a burdensome task 
for assistant teachers in computer science course because the number 
of students and the variability of programs for one problem. So it will be 
important to support teachers and students in programming initiatives by 
considering new assessment approaches. In this paper, we propose an 
automated flowchart algorithms scoring system called eAlgo. Recognition 
of solutions is based on graph matching. Given parameters to the similarity 
measure, this method called AMAS (Automatic Matching for Algorithmic 
Solutions) will be able to assess automatically learners’ algorithms based 
on a predefined algorithms pre-established by the instructor. The main goal 
of the proposed method is to help teachers to alleviate the scoring load. 

for citations:

Journal of e-Learning and Knowledge Society
Je-LKS

The Italian e-Learning Association Journal

Vol. 12, n.2, 2016
ISSN: 1826-6223 | eISSN: 1971-8829

Aiouni R., Bey A., Bensebaa T. (2016), An automated assessment tool of flowchart programs in 
Introductory Programming Course using graph matching, Journal of e-Learning and Knowledge 

Society, v.12, n.2, 141-150. ISSN: 1826-6223, e-ISSN:1971-8829



142

PEER REVIEWED COMMUNICATIONS 
Vol. 12, n. 2, May 2016Je-LKS

1 Introduction
As programming skills become ever more important and a core competency 

in 21st Century for almost all countries, this is leading individuals to seek out 
new ways of learning to program.

Programming is a discipline used for a long time in a naïve way with no 
particular formalism. It has always been problematic, no particular formalism. 
This discipline is often source of problems for both the teacher and the stu-
dent. For the teacher, because he has to find the right methods to help students 
assimilate abstract concepts. On the other hand, for students who are still in 
their initiation phase, the problem is even more important. It has been noticed 
that the abandon or failure rate in introductory courses in programming for 
freshmen (undergraduate) range from 25% to 80% (Kaasboll, 2002). According 
to some cognitive psychological studies, this is mainly due to the nature of the 
discipline taught. These studies have identified the major axes of the intrinsic 
difficulties of algorithms.

In Algorithms, unlike other sciences such as physics, the student does not 
have a simple model viable of computer, which could serve him as a base to 
build more sophisticated models. In the contrary, his experience with it seems 
to favor an anthropomorphic model which does not allow him to understand 
the brutal return of error faced at the beginning of his practice of programming.

Another specific algorithmic difficulty is the abstraction of the task: the le-
arner must factorize in the algorithm, the set of behaviors of the task. The result 
is a “blank page syndrome”, highlighted in particular by Kaasboll (Ibidem). 
This raises the key question:

What teaching methods proposed and with what tools can we improve le-
arning programming?

In recent years, the integration of information and communication techno-
logies (ICT) has revived the improvement of the quality of teaching and lear-
ning different skills. We argue that the appropriate use of ICT with innovative 
teaching methods and tools appropriate to the context could be the solution 
to the problem of learning algorithms (Amerind et al., 1998; Benabbou & 
Hanoune, 2007).

The TEL (Technology Enhanced Learning) has known substantial improve-
ment efforts. For instance, they have been formed that formalisms are needed 
whether in the way to describe, to index pedagogical contents or to script 
educational activities. In this sense, the evaluation of algorithms for learning 
using ICT has known a very important achievement in terms of developing 
new tools for automatic assessment as was stated in (Higginppàs et al., 2005).

The main difficulty associated with this state of facts, just the assessment 
itself. Assessment in classroom was always the mysterious task (Hadji, 1997). 



Rym Aiouni, Anis Bey, Tahar Bensebaa - An automated assessment tool of flowchart programs in Introductory Programming Course using graph matching

143

Several methods and tools have been devoted to the evaluation but they all 
suffer from failure. This inefficiency is due either to doubtful results unique-
ness; that is to say, they cannot be applied to any area (we cannot evaluate the 
algorithmic skills with filling the gaps method).

Furthermore, the algorithmic assessment activity is among the most bur-
densome because algorithms are characterized by the multitude of solutions to 
a given problem. This feature increases the difficulty of evaluation in learning 
systems: experts find it hard to anticipate all the possible solutions to a pro-
blem to integrate them in the basic solutions (Guibert, 2005). Localization of 
errors, which is an important factor in the progression of learners, is another 
difficulty resulting from this feature. This complicates the implementation of 
these systems.

Since long time, many experienced teachers in many universities have been 
in spite of their experience confronted to difficulties of their students face the 
problem of assessment of programming assignment. For this reason, a lot of 
software have been developed on the last decade. But unfortunately they suffer 
for many restrictions as inefficiency, restriction in designing programs, etc and 
do not fit well with the pedagogical requirement of the assessment task as any 
software development process (Wang et al., 2011). 

In this paper, we have developed an automatic assessment system to assess 
students’ algorithms for learning. AMAS is the proposed method to assess using 
a graph matching method with predefined solutions. This proposal is made in 
the context of investigation of different automatic methods to be used in as-
sessment of students’ algorithms as initiated by Bey and Bensebaa (2013). The 
primary research question in the current paper was whether or not we obtain 
similar results of automatic assessment comparing to human expert assessment 
using flowchart representation of algorithms and graph matching method.

2 Learning by doing
Generally, people enjoy about learning new ways to better their selves. 

Learning programming is a discipline that requires this kind of learning appro-
ach (Caignaert, 1988) because students gain a better understanding of what it 
actually means to do the algorithm. Moreover, they get a deeper understanding 
of the programming task especially when they propose an erroneous solution 
and after that they obtain a formative feedback which promotes critical thin-
king skills (Labat, 2002). In this way, we have proposed a strategy to reuse 
common solutions as a basis and trying to find the most similar algorithm 
that match the proposed solution by learner with using s similarity measure 
between flowcharts. In the following section we explain the proposed method 
of assessment used the proposed tool. 



144

PEER REVIEWED COMMUNICATIONS 
Vol. 12, n. 2, May 2016Je-LKS

3 eALGO, an automated assessment tool

3.1 Modeling an algorithmic solution
It is well known in programming that to simplify a complex task, we have 

to break it down into less complex tasks and repeat this process until we reach 
a level of decomposition with basic operations and / or elementary tasks. The 
algorithm solving the problem will then be a composition of these latter opera-
tions (basic and elementary). The number of decomposition stages depends on 
the complexity of the problem: more complex, the number of steps is important.

This method of successive refining processes (also called top-down appro-
ach) changes gradually and with maximum chances of success of the abstract 
description of the solution of the problem (for a complex operation) to the 
algorithm that will resolve it. The algorithm is at its last level when refining 
contains only basic operations, critical core operations, elementary operations 
and control structures.

“A deep understanding of programming, in particular the notions of successive 
decomposition as a mode of analysis and debugging of trial solutions, results in 
significant educational benefits in many domains of discourse, including those 
unrelated to computers and information technology per se.’’ (Seymou Papert, 
in ‘Mindstorms’1)

A basic operation is defined as an operation known as algorithmic sorting a 
table. A basic operation is critical when its presence in the algorithm is essen-
tial. An elementary operation, meanwhile, is a simple algorithmic operation 
(e.g. assignment).

Thus, at level 1, the problem is decomposed into a set of basic operations (if 
detectable at that level), elementary operations and decomposable operations 
that can be linked by control structures. The number of levels of decomposi-
tion depends on the complexity of the problem. Down through the levels, only 
decomposable operations are broken, and this decomposition stops when you 
get to a level consisting only of basic operations and basic operations

This approach prevents the learner from drawing in the details from the 
start and gradually decreases the complexity of the problem being addressed. 
In addition, the learner can freely express his solution, without any influence 
or restriction, which promotes autonomy.

Our goal with this approach is to evaluate algorithmic solutions. However, 
it is important not to overlook the essential fallout that constitutes learning by 
learners of decomposition. Indeed, it is a must for the learner in the formulation 

1 Mindstorms: Children, Computers, and Powerful ideas (Basic Books (AZ))-Trade paperback (1993)



Rym Aiouni, Anis Bey, Tahar Bensebaa - An automated assessment tool of flowchart programs in Introductory Programming Course using graph matching

145

of the solution.
Unlike to the representation used in the work presented by Bey and Ben-

sebaa (Bey & Bensebaa, 2013), which is shorthand notation for programming 
which uses a combination of informal programming structures and verbal de-
scriptions of code, we have adapted a graphical representation using flowchart.

Flowcharts are a visual representation of program flow. A flowchart normal-
ly uses a combination of blocks and arrows to represent actions and sequence. 
Blocks typically represent actions. The order in which actions occur is shown 
using arrows that point from statement to statement. Sometimes a block will 
have multiple arrows coming out of it, representing a step where a decision 
must be made about which path to follow. This graphical representation was 
chosen for its many benefits. Flowcharts are better way of communicating the 
logic of an algorithm. Also, problem can be analyzed in more effective way 
and thus makes program modification easier for learners. 

Our goal is to arrive at a reliable estimate for algorithmic solutions. So 
when the learner has completed his decomposition of the problem that has been 
proposed, its solution is compared with those of the expert solutions together 
in a plan.

An algorithmic problem is characterized by its multitude of solutions and 
its many forms of decomposition. For this, we define plan solutions as a set 
of paths representing the different solutions that have the same decomposition 
approach to solving a problem. It can contain the correct steps as well as the 
wrong ones. It is made by an expert and has steps, correct or incorrect, consi-
dered pedagogically interesting (Figure 1).

Fig. 1 - Example of a plan of solutions



146

PEER REVIEWED COMMUNICATIONS 
Vol. 12, n. 2, May 2016Je-LKS

3.2 How to assess the flowchart of the learner?
When a learner expresses his solution as a flowchart we try to assess this 

last one by comparing it with solutions predefined by the expert. So we can 
summarize the whole process according to three principal components as de-
picted in figure 2.

 

 
Fig. 2 - Functional architecture of the proposed method

3.3 Descriptor generator
To automate the comparison of the process of learning with those of the 

expert (solutions plan), we have been inspired by the work of Sorlin (Sorlin et 
al., 2006) on the measurement of multi-labeled graphs. This approach allowed 
us to propose a method for matching algorithmic solutions.

From the organizational structure of the learner, a description of the solution 
is generated. For this, we assigned to each operation and each transition a set 
of labels. The set of couple (Num_operation, label) and triples (Num_opera-
tionS, Num_operationT, label) are descriptors and constitute the description 
of the solution. The couple (Num_operation, label) describes operations of the 
flow chart and the triples (Num_operationS, Num_operationT, label) transition 
between operation (S and T are for source and target operation).

Given a set Lo of operation labels and a set Lt of edge labels, a flowchart 
algorithm is defined by a triple S = <O, ro, rt> such that:

• O is a finite set of operations,
• ro ⊆ O × Lo is a relation associating labels to operations (edges in the 

flowchart), i.e. ro is the set of couples (opi, l) such that the operation 



Rym Aiouni, Anis Bey, Tahar Bensebaa - An automated assessment tool of flowchart programs in Introductory Programming Course using graph matching

147

opi is labeled by l. For each edge of the flowchart, two descriptors are 
assigned, one contains the nature of the edge, if it is an operation, a test 
or a loop and the second contains the label. For example in figure 4, for 
the operation read(x) two descriptors were assigned; (1.EO) to mention 
the type of the operation and (1.read) for labeling.

• rt ⊆ O × O × Lt is a relation associating labels to edges, i.e. rt is the set 
of triples (opi, opj, l) such that edge (opi, opj) is labeled by l. Label in 
transition may take two values: seq for sequence transition or True/False 
when it is an alternative test.

The description of the process S is the set of all its operations characteristics 
and transitions Desc (S) = ro U rt.

As shown in Figure 3, the organizational labeling of a flowchart is as fol-
lows:

 

Fig. 3 - Labelling process of the flowchart



148

PEER REVIEWED COMMUNICATIONS 
Vol. 12, n. 2, May 2016Je-LKS

3.4 Filtering
The filtering step is installed before the matching process in order to optimi-

ze the process of searching the most similar flowchart. It consists to find among 
the predefined flowcharts those who contain all the critical basic operations that 
were prescribed by the expert. The filtering allows to decrease the number of 
solution to be matched. As a result, we obtain a subset of solutions from the 
predefined ones that contains critical operations. This subset of solutions will 
be presented as candidates where we try to find the closest one to the solution 
of the learner by the matching mechanism. 

3.5 Matching process
Calculating the similarity between solutions
A match between two steps S1 = <O1, RO1, rt1> and S2 = <O2, RO2, rt2>, 

is a relationship: m ⊆ O1× O2.
Such matching associates each operation of the solution with the operation 

of the same order of the other solution.
To measure the similarity between two approaches with respect to the pai-

ring m, we suggest to adapt the formula of similarity (Tversky, 1977) genera-
lized by Sorlin (Sorlin et al., 2006):

 (1)
Formula (1) calculates the similarity of two solutions, by matching their 

descriptors. The function f defines the relative importance of descriptors, with 
respect to each other. This function formula (2) is often defined as a weighted 
sum:

 (2)
The assignment of weights to the various descriptors of a solution is perfor-

med by the expert. This weight reflects the importance of the descriptor in terms 
of the purpose of the exercise and what should be assessed by this exercise.

The method for determining a mark first computes a similarity measure 
(a value between 0 and 1) between relationships in the specimen solution 
and relationships in a student’s answer. Then, the best match is found – the 
match between relationships which maximizes the overall similarity between 
flowchart algorithms. The best match is then scored according to the given 



Rym Aiouni, Anis Bey, Tahar Bensebaa - An automated assessment tool of flowchart programs in Introductory Programming Course using graph matching

149

mark scheme provided by the expert.
The following figure demonstrates an example of matching two flowchart 

solution.
 

Fig. 4 - An illustrative example of similarity measure between learner solution 
(S_learner) and a solution from the base (S_base)

Conclusion and future works
In this research, we have proposed an automated assessment method of 

flowchart programs based on program matching offering to novice program-
mers an environment of practice and to have an instant correction of their 
solutions. The aim of this method is to let learners practicing programming 
without fear of error and to reduce the burden of grading students especially in 
the case of large number of assignment as in MOOCs courses (Cathy, 2013).

An experimental study in labs is in progress to measure the effectiveness of 
the system by comparing it against human experts’ assessment results. 

A long term goal of automated scoring is to be able to generate an accurate 
formative feedback. This aspect would be studied in the future whether or not 
eAlgo has the capability to give a formative feedback to students and how much 
this feedback can aid learners to progress and to develop their programming 
skills.

REFERENCES

Amerein S. B., Proquin M., Renaud C. &Trigano P. (1998), De la réciprocité éducative 
dans le cadre d’une nouvelle pédagogie de l’enseignement supérieur: un didacticiel 
au service de l’informatique fondamentale. NTICF’98, ROUEN 



150

PEER REVIEWED COMMUNICATIONS 
Vol. 12, n. 2, May 2016Je-LKS

Benabbou F., Hanoune M. (2007), Utilisation des NTICs pour l’apprentissage et 
l’autoévaluation de l’algorithmique. SETIT 2007.

Bey A., Bensebaa T. (2013), Assessment makes perfect: improving student’s algorithmic 
problem solving skills using plan-based programme understanding approach, 
International Journal of Innovation and Learning (IJIL), 14(2), 2013.

Caignaert, C. (1988), A study of learning methods evolution and programming progress, 
Bulletin of EPI, 50, 52-60.

Cathy Sandeen (2013), Assessment’s Place in the New MOOC World, Research and 
Practice in assessment, Vol. 8, 2013.

Charle, H. (1997), L’évaluation démystifiée. Paris, ESF, 1997.
Guibert N., Guittet L. & Girard, P. (2005), Apprendre la programmation par l’exemple: 

méthode et système, Proceedings de la 17eme conférence Francophone sur 
l’Interaction Homme-Machine 2005, Montpellier: 25-27 May, 461-466.

Hannola L., U. Nikula, M. Tuominen and H. Kälviäinen (2010), The front end of 
innovation - a group method for the elicitation of software requirements, 
International Journal of Innovation and Learning 7(3): 359-375.

Higgins C. A., Gray G., Symeonidis P. & Tsintsifas A. (2005), Automated Assessment 
and Experiences of Teaching Programming. Journal on Educational Resources in 
Computing (JERIC), vol. 5, pp. 5. 

Kaasboll, J. (2002), Learning Programming, University of Oslo.
Labat, J. (2002), EIAH: Quel retour d’information pour le tuteur ?, Actes du colloque 

Technologies de l’information et de la Communication dans les enseignements 
d’ingénieurs et dans l’industrie Lyon. 

Sorlin S., Sammound O., Solnon C., Jolion J.-M. (2006), Mesurer la Similarité 
de Graphes, Actes des 6e journées francophones Extraction et Gestion des 
Connaissances 2006, Atelier ECOI 2006, janvier 2006, p. 21-23.

Tversky.A (1977), Features of similarity, Psychological Review, 84, 327-352.
Wang T., Su X., Ma P., Wang Y., Wang K. (2011), Ability-training-oriented Automated 

Assessment in Introductory Programming Course, Computers&Education, Elsevier, 
vol. 56, pp. 220-226.


