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Learning in online environments has the potential to better classroom 
instruction in many avenues. In this context, this article presents two novel 
technologies, first, a method to causally model learner competencies, both 
conceptual and metacognitive, and second, a method to identify learning 
styles of individual learners. We contend that in both cases it would be 
extremely difficult for human instructors to thoroughly understand the 
competencies and competency developments of individual leaners as well 
as the individual learning styles and changes to learning styles. We further 
contend that these two technologies, as part of a singular framework, 
will assist classroom instructors to complement their understanding of 
competencies and learning styles of their classes, respectively, and facilitate 
instructions to be adapted at various levels of granularity. 
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1 Introduction
In spite of the recent advances, in our opinion, online learning is still being 

viewed, at best, as supplemental to conventional classroom-based instruction. 
Not many believe that contemporary eLearning techniques have the capacity 
to substitute classroom instruction, particularly, the ability of an instructor to 
monitor a student’s progress, to offer context-specific feedback, and to adapt 
instruction remain as challenges for the advocates of eLearning. In an attempt 
to mimic, if not better, these capabilities, researchers of eLearning have deve-
loped techniques to model a learner’s competencies and to identify learning 
styles adopted by individual learners. 

This article, first, offers a method to model competencies of a learner in 
causal models. Causal reasoning is ubiquitous in our everyday lives. With the 
help of computer models, researchers offer and demand a better understanding 
of causal influences. For example, physicians employ diagnostic computer 
models, engineers employ architectural computer models, financial analysts 
employ economic models, and volcanologists employ seismic computer mo-
dels, to accurately predict cause-and-effect relationships among variables in 
their respective domains. How, then, about a computer model that establishes 
cause-and-effect relationships between students’ learning interactions and their 
competencies? Here, we review one particular theory called Self-Regulated 
Learning that attempts to relate learners’ performances to their self-regulatory 
abilities, and present a causal model of the said theory, created using an ex-
ploratory framework. 

Secondly, this article presents a method to trace specific learning styles 
adopted by an individual learner. The information about learners’ learning styles 
can help teachers and learners to better understand the learning processes of 
learners as well as why learning is sometimes difficult for particular learners 
while easy for others. 

We will individually elaborate these two features and their capacity to be 
integral components in an online learning environment. We will then discuss 
how these two features come together in a framework to evolve and adapt 
online learner competency, content, and interactions.

2 Causal Models of Competency 
Competency is a proven skill, where the proof normally resides with fac-

tors such as years of experience honing that skill, successful coursework cor-
responding to that skill, positive feedback from referees about that skill, the 
number of projects executed involving that skill, and a self-evaluation of one’s 
competency of that skill. 

Competency can be associated with task level conceptual skills or meta-
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cognitive skills. For instance, in the domain of Java programming, skills at 
the task level include ‘building a flexible architecture’, ‘leveraging proven 
architectural methodologies’, integrating patterns and frameworks’, ‘optimising 
programmer developmental tools’, and so on. In this domain, task level skill 
set not only addresses conceptual target knowledge a programmer is expected 
to possess (see http://www.axmor.com/j2ee-development.aspx for an example 
set of target knowledge) but also includes the processes that the programmer 
employs to achieve the conceptual knowledge. For instance, programmers are 
expected to use software patterns in their code, which is classified as conceptual 
task-level knowledge. The development environment (such as the Eclipse or 
BlueJ Java IDE) could be customized to encourage programmers to use softwa-
re patterns in their code, which is a task level process. Further, programmers 
can be engaged in an activity to review their code to ensure optimal use of sof-
tware patterns. Such skills that are typically aimed at improving performances 
of task level activities belong at the meta level. Self-regulation, co-regulation, 
and self-reflection are some of the metacognitive skills one would want to see 
and promote among. 

2.1 Causality
Causality is inherent in human life. We recognise a variety of causes. We 

understand mechanical causes, for example pressing on a gas pedal causes a car 
to accelerate and move. We understand psychological causes so that being mean 
to someone causes them to become angry and defensive. Scientists also make 
use of causal relationships. In many cases, discovering causality is difficult. For 
instance, ethical reasons prevent us from conducting experiments to see if smo-
king really causes cancer. Still, we seek to discover such causal relationships 
from what we observe. We formally represent these relationships, and provi-
de for mathematical and algorithmic manipulations of the relationships. Such 
discovery, representation, and manipulation are made possible by computer 
models such as diagnostic models, economic models, and molecular structural 
models, all to more accurately predict cause-and-effect relationships.

How then, about a computer model that causally predicts students’ future 
performances based on their past and current observable interactions and study 
skills in online learning environments? Can a life-long learning model guide a 
student to reach their full potential with the help of a set of underlying causal 
relationships? Can a causal model help teachers to predict why students fail to 
understand certain concepts? Can a causal model simulate how students evolve 
an understanding of concepts?

Research has shown that high achieving learners exhibit discernible self-
regulatory abilities such as goal-setting, self-monitoring, seeking help, and self-
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efficacy (Boekaerts & Corno, 2005; Winne & Hadwin, 1998). Would it, then, be 
possible to employ such causal models to promote these self-regulatory abilities 
among online learners? If possible, then, can we causally measure how well 
students apply and transfer these abilities in online learning environments such 
as Moodle? Answers to these questions start with the creation of a causal model 
that identifies variables and relationships corresponding to these self-regulatory 
abilities. In this article, we present one such causal model. Further, we show a 
computational mechanism to validate the model so that one can believe that the 
proposed causal model coincides with Self-Regulated Learning (SRL) literature 
(Boekaerts et al., 2005; Azevedo et al., 2006; Biswas et al., 2009).

Research into theories of education seeks to identify causes of learning 
performance and difficulty. By discovering such causes we gain the ability to 
intervene and improve performance. However research is hampered by several 
difficulties, including difficulties of measuring variables of interest, subjectivity 
of measurements, limited quantities of data, and difficulty maintaining experi-
mental control outside of artificial situations (Rao & Kumar, 2008). 

To some degree, these difficulties can be mitigated by the application of 
learning software to perform measurement efficiently and consistently (Bro-
kenshire & Kumar, 2009). Causal discovery algorithms provide a means of 
discovering some causal relationships from observational data. While the use of 
these causal discoveries to directly influence the learning and the instructional 
processes remains feasible, it requires further studies to validate the scope and 
depth of their applicability. For instance, in domains such as Programming 
Languages, the amount of observed online interactions that can be mapped to 
specific programming skills is quite high. Further, the reliability and atomicity 
of an observed individual interaction (e.g., a learner annotation corresponding 
to a single type of ‘bug’ in a particular coding assignment) as to its intended 
purpose, extent of its use, its success, its failure, and its variations over time 
play a critical part in considering that single interaction as a potential data 
element for the causal model. On the other hand, domains such as History or 
Theory of Computing tend to yield observed online interactions pertaining 
to activities related to reading. While the amount of observed online reading 
could yield higher numbers, the reliability with which one could map online 
reading activities to reading comprehension still remains a research challenge. 
Similarly, the atomicity of reading activities requires further exploration before 
one could define an explicit mapping between observed reading interactions 
and a reading skill. Thus, the nature of the online domain and the types of 
online interaction determine how well one could reliably observe a significant 
number of learning related interactions within the scope of a particular skill. It 
is our contention that the context of a learning activity could be more accurately 
defined (atomicity) and more reliably mapped onto specific skills as long as the 
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granularity of the learning activity is considerably small. That is, the creation 
of a context that contains what the learner did in debugging a specific piece of 
code, when encountering a particular type of error, with the help of a regulated 
set of resources, while possessing a reasonably defined coding skill set is much 
more granular and defined than the creation of a context that contains what the 
learner did in general while reading a paragraph of text.

2.2 Computational Models for Causality
Graphical Causal Models (GCM) are a graph-based technique for repre-

senting causal relationships between variables of interest. They began as an 
outgrowth of Bayesian Belief Networks (BBN) and retain similar semantics, 
though there are several varieties (Brokenshire & Kumar, 2009). In general, 
a node represents either a continuous or discrete variable, which may have an 
associated probability distribution or conditional probability table. Directed 
edges between nodes indicate a directed causal relationship and undirected 
edges indicate a possible causal relationship (dependency). Various specialized 
types of graphs have additional semantics. 

GCM can be used to calculate the likelihood of an event given evidence 
as with a BBN, but can also be used to calculate the likelihood of an event 
given our intervention to cause another event. These two calculations are not 
equivalent (see e.g. Pearl, 2000, for detailed discussion). This is of particular 
interest in education and educational technology where we wish to take steps 
to improve learning outcomes, not just be abstractly aware of them. Given an 
accurate GCM, such determinations can be made algorithmically. 

Construction of a GCM can be performed manually as a knowledge engine-
ering effort including domain experts, or it can be accomplished automatically 
using causal discovery algorithms, possibly including some domain knowledge 
as an aid. There are currently two types of causal discovery algorithms. The 
first is constraint based algorithms such as the Fast Causal Inference (FCI) 
algorithm presented in (Spirtes et al., 2000) which provide an ‘equivalence 
class’ of models which are all consistent with the statistics. The second is Ba-
yesian discovery algorithms which compute likelihoods for complete models 
by Bayesian updating given data.

Each class has advantages. The equivalence class of the constraint algori-
thms provides a complete set of consistent models, which can be differentiated 
using experimental means. However, there is no formal analysis of the reliabi-
lity of the results of the algorithm when data is noisy. The Bayesian methods 
provide a fully oriented model with a likelihood of being correct, but do not 
provide the entire class of models. 

To evaluate the potential of graphical causal models for education we con-
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structed several models of one particular educational theory, Self-Regulated 
Learning. Simulation studies have been performed on these models to evaluate 
the reliability of the algorithm in discovering the model (Brokenshire & Kumar, 
op. cit.). In a non-traditional use of simulation techniques, these studies have 
indicated the accuracy with which the proposed models could be discovered 
from raw data. We also investigate a means of using meta-analysis to gather 
sufficient statistics from existing publications to act as input to the discovery 
algorithm.

The following discussion uses both BBN and GCM to exemplify the im-
portance of causal models in online learning. Shown below (Figure 1) is an 
abstract depiction of a Bayesian Causal Network that estimates programming 
competency in terms of activities related to code design, coding, documenting 
the code, debugging the code, and testing of the code.

Fig. 1 - A Bayesian Belief Network of Java Competency

The Bayesian network shown in Figure 1 corresponds to 9 competency 
inputs as shown in the top tier – learning traces, self-assessment, LMS Events 
data, formal assessments outcome, instructor feedback, social software data, 
peer feedback, peer consults, and group collaboration. Activities of program-
mers corresponding to these 9 inputs are then classified into activities contri-
buting to the 5 Java skills – design, coding, documentation, debugging, and 
testing. In turn, these 5 skills contribute to an estimation of the overall Java 
programming competency of a learner. 

This network has been abstracted based on what could potentially be obser-
ved when learners are engaged in online programming activities. For instance, 
it is quite possible for a peer to offer feedback on the design activities of ano-
ther learner, as long as these design activities remain observable. At this time, 
the system that we are currently developing (see http://kevinhaghighat.com/
MILE for details) only allows coding related activities for the observation of 
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peers, thus limiting the scope of the Bayesian network shown above. Thus, 
the scope of the network is limited only by observable and shareable learner 
interactions. Privacy issues dictate that not all observable interactions are rea-
dily shareable. Only the interactions that are explicitly allowed by that learner 
could be shared. 

The node titled “Learning Traces” could employ metacognitive skills such 
as “Self-Regulation” and supply data pertaining to metacognitive skills. Self-
regulation characterizes learners and their learning habits that are typically 
proactive in nature. Such proactive students are called self-regulated learners 
and the theory that models and predicts such metacognitive traits is called the 
theory of Self-Regulated Learning. 

2.3 Self-Regulated Learning
Self-Regulated Learning (SRL) theory attempts to explain academic lear-

ning and achievement of learners in terms of metacognitive characteristics and 
processes individuals use to regulate their own behaviour. It emphasizes the 
student as an active participant in the learning process, as opposed to a pas-
sive recipient of information provided by a teacher. It concerns how learners 
develop learning skills and how they develop expertise in using learning skills 
effectively (Winne & Hadwin, 1998; Winne, 2001). SRL comprises a set of 
strategies and tactics employed by learners to regulate their own learning pro-
cesses. It arises from two key observations. First, learners’ goals for learning 
take precedence over goals set by teachers, authors of curricula, and developers 
of learning objects. Second, learners are in charge of how they learn. They 
choose which study tactics and learning/problem-solving strategies to use as 
they strive to achieve their goals.

SRL theory covers a large number of variables and situations that interact 
in a complex and difficult to control environment. The complexity of the envi-
ronment and large number of variables, many of which are not directly obser-
vable, makes it difficult to conduct studies that provide causal relationships. 
Two types of computational SRL models have been observed in the literature 
– informal and formal. In informal models (Rao & Kumar, 2008; Shakya et 
al., 2005), learner interactions in targeted learning activities are mapped onto 
components of a theoretical framework of SRL (e.g., Winne & Hadwin, op. 
cit; Zimmerman, 2002), where the mapping between learner activities and SRL 
variables is informal and is mostly determined by the experimenters. Formal 
models (e.g., Samsonovich, 2008; Brokenshire & Kumar, op. cit.) attempt to 
formally map learner interactions to specific variables and allow relationships 
among the variables to evolve into a theoretical framework. In this article, we 
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focus on formal SRL models where one can ‘discover’ alternative SRL models 
from existing trace data.

2.4 SRL Model from Popular Theories
In order to create the theory-specific model a literature review was conduc-

ted on SRL papers that described the two theories Winne & Hadwin, op. cit; 
Zimmerman, op. cit.) and the relationships these two theories predict, as well 
as on review articles that summarized the body of empirical work in terms of 
the theories. This resulted in a collection of papers that were then read closely 
for variables’ definitions and any correlational or causal relationships propo-
sed between the variables. These relationships were then composed to form a 
complete model (Brokenshire & Kumar, op. cit.). 

The models are intended as proofs of concept, demonstrating that the rela-
tionships in SRL can be represented in the form of graphical causal models. If 
we are to use causal models of SRL we must first demonstrate that SRL varia-
bles and relationships can in fact be represented in this formalism. The creation 
of a causal model of SRL from the literature acts as a kind of existence proof, 
demonstrating that the causal structure of SRL can be captured in this way. 

When creating a causal graph the appropriate identification of variables is 
necessary. There is almost always some choice in how to define a variable, in 
terms of the discretization of continuous variables or aggregating lower level 
variables into more abstract variables, and these choices change the structure. 
Omission of relevant variables can conceal causal effects and aggregation of va-
riables which have different causal structures can result in an unfaithful distri-
bution (Spirtes et. al., op. cit). Identifying the relationships between variables 
also depends on the presence of other related variables because we determine 
causal structure by considering how two variables relate in the presence of ad-
ditional variables. Thus, when using only observational data, excluding some 
variables from the model can limit the ability to discover causal relationships 
between modeled variables. Given this, in the case of the theoretical model, it 
is not expected that the model created corresponds perfectly to either the theo-
ry of SRL, or to the correct underlying structure. Approaching such precision 
in the theoretical model would require enlisting multiple experts in SRL in a 
knowledge engineering effort.

2.5 Simulation Studies
Algorithms for discovering causal structure from data are only useful if the 

amount of data required can reasonably be obtained. Theoretical results and 
simulation studies have shown that simple structures can often be discovered up 
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to the point of observational equivalence with sample sizes between 1000 and 
10000 (Spirtes et. al., op. cit). To evaluate the possibility of learning the cau-
sal structure of SRL theory from observational data, we conducted simulation 
studies using the theory-specific model to establish approximately the quantity 
of observational data required to correctly recover the equivalence class. If the 
model accurately reflects the theory, or has a similar structure and sparseness, 
this should provide an idea of the quantity of data required to learn the model 
from real data (Brokenshire & Kumar, op. cit.). The simulations are run using 
the TETRAD IV software package (Scheines). Note that the data used in the 
simulation have been generated by the TETRAD system based on a sample, 
engineered, theory-specific, reference model. Reference models can be built 
based entirely from readings of literature corresponding to the theory or from 
a single meta-analysis that yield correlation matrices. For example, Robbins et 
al. present the results of a meta-analysis of 108 articles relating psychosocial 
and study skill factors to college outcomes (Robbins et. al, 2004). The studies 
discussed here only used simulation data and did not use observational real-
world data reported in (Rao & Kumar, op. cit.; Shakya et al., op. cit.).

Since the theory-specific model is not parameterised, and to avoid any bia-
sing effects from a particular parameterisation of the variables, each simulation 
run used a different randomly generated parameterisation. Each variable was 
assumed to be discrete, and to take between two and four values. 30 or more si-
mulation runs each were done with samples of 1000, 2000, 5000, 10000, 20000, 
and 50000 complete data instances. A complete instance of data is a vector 
with one element for each variable in the sample model. It can be considered a 
simultaneous measurement of all of the variables in the model. The Partial An-
cestral Graphs (PAG) produced by the FCI algorithm at each sample size were 
compared with the PAG produced directly from the conditional independence 
relationships, as well as being compared with the theoretical model itself.

The simplified theory-specific reference model is presented in Figure 2, 
along with the equivalence class found by FCI given perfect data. The reference 
model uses causal links between variables based on readings in the literature. 
The equivalence model consists of causal links (e.g., effort --> performance), 
confounding links (e.g., level of goal challenge o--o interest), and partial links 
(e.g., strategy knowledge o--> strategy use). 

Using TETRAD, we then compared the equivalence class models with the 
reference graph. One of the key criteria for comparison is the adjacency among 
nodes. With sample sizes of up to 5000, the majority of the adjacencies are 
correctly identified but there are large numbers of false negatives where adja-
cencies were not correctly identified. False positives were rare, with no false 
positives being the most common case at all sample sizes. This lends credence 
to the result from the equivalence class that the presence of an adjacency in the 
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discovered graph is strong evidence for its existence. As sample sizes increased 
the results for adjacency detection begin to converge to correctly identifying 
the complete set of adjacencies with very low rates of both false negatives 
and false positives. Thus, one can conclude that FCI is reliable in generating 
equivalence models with respect to adjacency when compared with a reference 
model, for higher sample sizes.

Fig. 2 - the simplified theoretical SRL model and its equivalence class SRL model 
(Brokenshire & Kumar, op. cit.)

Another criteria for comparison is the accuracy of the orientations of the 
links between nodes. Brokenshire and Kumar (Brokenshire & Kumar, op. cit.) 
report that the orientation results are less consistent. At very low sample sizes 
of 1000 and 2000, only 9 to 12 of the 16 possible arrow points are correctly 
identified. As sample sizes increase to 5000 and above, the algorithm begins 
recovering all of the arrow points it can correctly recover. However, the algori-
thm produces a large number of false positive arrow points at low sample sizes, 
and false positives continue to occur, even at sample sizes of 50,000. This limits 
the confidence one can have in the orientations produced by the algorithm, 
particularly at low sample sizes. One possible technique to reduce the number 
of false positive orientations is to include background information about links 
which we are certain are not allowable due to temporal relationships or other 
constraints between the variables. Further study should investigate the effects 
of including such temporal information on simulation results. 

One of the key findings of the proposed approach of generating equivalence 
models using FCI is that the number of experiments required to confirm unde-
termined endpoints (endpoints labeled with a o). It is quite possible to use less-
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than-ideal equivalence models generated by the FCI solely using observed data 
from an individual learner or a group of learners. These equivalence models 
could postulate variables that have been observed from the data and potential 
causality between observed as well as unobserved variables. If a researcher is 
interested in a particular relation between any two nodes in the model, it is quite 
possible to verify that such a relation is non-existent in all possible equivalent 
models produced by the FCI, thus allowing the researcher to proceed with a 
real-world experiment to observe and validate the said relation. Brokenshire 
and Kumar (Brokenshire & Kumar, op. cit.) show that an estimated 73% re-
duction in real-world experiments to confirm undetermined endpoints. 

3 Identifying Learning Styles 
This section focuses on the identification and consideration of learning 

styles in learning systems. The field of learning styles is complex and many 
different learning style models exist (e.g., Felder & Silverman, 1988; Kolb, 
1984; Honey & Mumford, 1982). While there are still several open issues 
with respect to learning styles (Coffield et al., 2004), all learning style models 
agree that learners have different ways in which they prefer to learn. Further-
more, many educational theorists and researchers consider learning styles as 
an important factor in the learning process and agree that considering them in 
education has high potential to facilitate learning. For example, Felder pointed 
out that learners with a strong preference for a specific learning style may have 
difficulties in learning if the teaching style does not match with their learning 
style (Felder & Silverman, op. cit.; Felder & Soloman, 1997). From theoretical 
point of view, conclusion can be drawn that incorporating learners’ learning 
styles in a learning environment makes learning easier for learners and increa-
ses their learning efficiency. On the other hand, learners whose learning styles 
are not supported by the learning environment may experience problems in 
the learning process.

Based on these theoretical arguments, several adaptive learning systems 
have been developed over the last years. Examples of such systems include 
CS383 (Carver et al., 1999), WELSA (Popescu, 2008), and TSAL (Tseng et 
al., 2008). Evaluations of these systems demonstrated the possible benefits 
of considering learning styles in learning systems, showing that the required 
time for learning can be decreased and the overall learner satisfaction can be 
increased. 

The first step towards incorporating learning styles in technology enhanced 
learning is to identify learners’ learning styles. Brusilovsky (1996) distinguished 
between two different ways of student modelling: collaborative and automatic. 
In the collaborative approach, the learners provide explicit feedback which can 
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be used to build and update a student model, such as filling out a learning style 
questionnaire. In the automatic approach, the process of building and updating 
the student model is done automatically based on the behaviour and actions of 
learners while they are using the system for learning. The automatic approach 
is direct and free from the problem of inaccurate self-conceptions of learners. 
Moreover, it allows learners to focus only on learning rather than additionally 
providing explicit feedback about their preferences. In contrast to learning 
style questionnaires, an automatic approach can also be more accurate and less 
error-prone since it analyses data from a time span rather than data which are 
gathered at one specific point of time.

Due to the advantages of identifying learning styles through automatic 
student modelling, we investigated the potential of automatically identifying 
learning styles with respect to the Felder-Silverman learning style model (FSL-
SM) (Felder & Silverman, op. cit.). We considered different sources for this 
identification process, including students’ behaviour patterns in online courses, 
their navigation patterns and their cognitive traits. In this paper, we propose an 
architecture that considers all three sources.

 
3.1 Using Behaviour Patterns for Detecting Learning Styles

An automatic approach has been designed, implemented and evaluated Graf 
et al., 2009), which uses the behaviour and actions of learners, gathered while 
they are learning, for inferring their learning styles. An important aim of this 
approach was that it should be applicable for different learning systems. Only 
few research works exist about automatic identification of learning styles in 
learning systems (e.g., García et al., 2007; Cha et al., 2006). These works aim 
at identifying learning styles in particular learning systems and therefore are 
tailored exactly to these systems by using only those behaviour patterns which 
are incorporated in the respective systems. Moreover, the investigated courses 
are created in consideration of learning styles by using particular types of le-
arning objects for detecting learning styles. 

When aiming at developing a generic approach for automatic student mo-
delling which can be used for different learning systems, several additional 
issues have to be considered. First, behaviour patterns have to be selected in 
a way that most learning systems are able to gather data with respect to these 
patterns. Furthermore, it needs to be noted that most courses in existing learning 
systems are not created in consideration of learning styles. Therefore, it is not 
sufficient that the system can technically track the required information about 
patterns but teachers also have to use the respective types of learning objects 
in their courses. Hence, only commonly used types of learning objects were 
selected as basis for patterns in the automatic student modelling approach. 
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Moreover, the approach has to consider that nevertheless some data might not 
be available and therefore has to be able to deal with missing data. Thus, the 
proposed approach considers a high number of patterns, which is beneficial for 
identifying learning style accurately.

For each of the four learning style dimensions of FSLSM, relevant be-
haviour patterns were selected, which were based on commonly used types 
of learning objects in learning systems. These patterns mainly consider how 
often students visits particular types of learning objects, how much time they 
spend on these types of learning objects, how well they do on particular types 
of questions in quizzes, etc.

For inferring learning styles from these behaviour patterns, a data-driven 
approach using Bayesian networks and a literature-based approach using a 
simple rule-based method were implemented. In a study with 127 students, who 
participated in a university course about object oriented modelling within the 
learning management system Moodle, both approaches were evaluated. The 
learning styles calculated from both approaches were compared with the re-
sults of the ILS questionnaire (Felder & Soloman, 1997), a 44-item instrument 
developed by Felder and Soloman for identifying learning styles based on the 
FSLSM. The evaluation showed that the literature-based approach achieved 
better results (precision values of the four dimensions ranged from 73.33% to 
79.33%) than the data-driven approach (precision values ranged from 62.5% 
to 68.75%) and identified learning styles with high precision. Hence, the pro-
posed concept including the literature-based approach can be seen as a suitable 
instrument for automatic detection of learning styles.

The concept for identifying learning styles through the literature-based ap-
proach was implemented in a standalone tool called DeLeS (Graf et al., op. 
cit.). DeLeS automatically extracts relevant data from a learning system’s da-
tabase and calculates learning styles by using the literature-based approach. In 
our research, this tool is used to fill the student model with information about 
the students’ learning styles.

3.2 Improving the Identification Process of learning styles through using 
additional sources

Besides using behaviour patterns that are based on visits of certain types of 
learning objects, we also did research on using other sources for improving the 
identification process of learning styles. We investigated the usage of navigation 
pattern, indicating how student navigate through a course, as well as students’ 
cognitive traits, in particular their working memory capacity.

Navigational behaviour refers to how learners navigate through the course 
and in which order they visit certain types of learning objects. The order in 
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which learners prefer to take in and learn from specific types of learning ma-
terial and activities, as well as in which order and priority these different types 
of learning material and activities should be presented for supporting learners 
with different learning styles is a key aspect of most learning style theories. 
In our study (Graf et al., 2010), we investigated the navigation patterns of 
students with different learning styles, using the same data as for the previous 
study. Assumptions about students’ navigation patterns were made based on the 
learning style theory and then these assumptions were statistically evaluated, 
using lag sequential analysis (Bakeman & Gottman, 1997). Some examples 
for such assumptions are that re-submitting exercises is a significant naviga-
tional behaviour for active learners and going from one self-assessment quiz to 
another without solving it is a significant navigational behaviour for intuitive 
learners. The results of this study showed that most of the investigated assum-
ptions could be confirmed, indicating differences in the students’ navigational 
behaviour depending on their learning styles. These resulting differences in 
navigational behaviour can contribute in student modeling as additional patterns 
in the identification process of learning styles.
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Fig. 3 - Architecture for Identifying Learning Styles

Furthermore, we looked into cognitive abilities, in particular working me-
mory capacity, and investigated the relationships between the four dimensions 
of FSLSM and working memory capacity. First, a comprehensive literature 
review was conducted, followed by an experimental study with 39 students, 
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and then, since both results were promising, a main study with 297 students 
was conducted (Graf et al., 2009; Web-OSPAN, 2010). In both studies, students 
were asked to fill out the ILS questionnaire (Felder & Soloman, op. cit.) in order 
to get information about their learning styles and perform the Web-OSPAN task 
(Web-OSPAN, op. cit.) in order to get information about their working memory 
capacity. The results of these experiments and detailed analysis showed that 
relationships between working memory capacity and three of the four dimen-
sions of the learning style model exist. These identified relationships have high 
potential to improve the student modelling process of cognitive abilities and 
learning styles, as has been demonstrated in an experiment with data from 63 
students (Graf & Kinshuk, 2010). In this experiment, results showed that the 
incorporation of data from the students’ working memory capacity can improve 
the accuracy of the identification process.

Both, navigation patterns and cognitive traits, showed high potential to 
improve the identification process of learning styles and can therefore be seen 
as useful extensions to DeLeS. Figure 3 shows the extended architecture of 
DeLeS, including sources from behaviour patterns, navigation patterns and 
cognitive abilities. The architecture consists of two main components: the ex-
traction component is responsible for extracting the required data from the 
learning system’s database and the calculation component is responsible for 
calculating learning styles based on information about students’ behaviour pat-
terns, navigation patterns and cognitive abilities.

Conclusions
We have argued for the use of graphical causal models (using Self-Regulated 

Learning theory as an example) and demonstrated the viability and usefulness 
of such a course. We contend that graphical causal models provide a useful 
means of representing the causal claims, in this case, of the underlying SRL 
theory in a formal and computable form, but they are limited by the availability 
of sufficient quantities of accurate data.

The exploratory framework taken by the causal discovery algorithms stands 
in contrast to the confirmatory framework to Structural Equation Modelling. 
The use of a confirmatory approach in which a model is proposed a priori has 
the considerable limitation of ignoring the equivalence class of models which 
can equally account for data. The confirmatory approach is appropriate for 
disconfirming proposed models, but cannot confirm one model over another 
equivalent model.

The exploratory framework has the benefit of discovering the complete equi-
valence class for the available data. A standard challenge of data based methods 
in machine learning and in science is over-fitting of a model to idiosyncrasies 
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of the data. The FCI algorithm and related algorithms partially overcome this 
difficulty by incorporating the faithfulness assumption, but may fail to correctly 
evaluate relationships when this assumption is violated. The models must of 
course be tested repeatedly in the same fashion as any proposed theory in order 
to be considered valid.

The creation of graphical causal models representing educational theories 
offers multiple benefits. They require a clear and precise specification of the 
claims of a theory and the definitions of the variables, and represent those 
claims in an understandable form. This formal, understandable representation 
should allow for clearer specifications of causal claims in the theoretical litera-
ture. More importantly, graphical causal models can answer questions specific 
to a particular set of learner competencies and how each of these competencies 
can potentially be improved with respect to dependent variables in the model. 
Thus, instructors can use GCM to have an overall competency of the entire 
class of students as well as the competency growth of an individual student over 
time. This paves way for highly personalised instruction based exclusively on 
an individual student’s GCM.

While the advantages of using GCM are becoming evident, one should 
also understand the inherent limitations. As discussed earlier in Section 2.1, 
the quality (atomicity and reliability) and quantity of the data limits model 
generation. When using causal discovery algorithms (such as FCI), limitations 
such as the sample size and the difficulty of evaluating high order conditional 
independence relationships from a reasonable amount of data need to be taken 
into consideration before employing the algorithms in real-world applications. 
The solution to such problems is the same as in any observational study: col-
lect more data, and collect better data. Another limitation concerns the Causal 
Markov Condition and the Causal Faithfulness Condition assumed under the 
generation of GCM (] Brokenshire & Kumar, op. cit.). Thirdly, for a model with 
a large number of variables, running the tests for conditional independence at 
conventional significance levels may result in multiple incorrect results given 
the large number of such tests required. Increasing the thresholds for significan-
ce of the statistical decisions changes the type of mistake likely to be made, as 
correct results may not meet significant thresholds. Given the reliance of the al-
gorithms on patterns of such results, changing the significance of the decisions 
can produce very different results from FCI and similar algorithms. Fourthly, 
the FCI algorithm is exponential in the in-degree (number of parents) of the 
model. For a sparse graph, FCI runs in a reasonable time, but then becomes 
quickly infeasible for graphs with many parents. This is directly related to the 
issue of Bayesian networks face with large conditional probability tables with 
graphs have high average in-degree. Finally, how truly a GCM can represent a 
theory in light of the fact that multiple viewpoints of the said theory could be 
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candidates. For instance, from the literature it has been found that the theory 
of self-regulation has multiple models that are active. Under the same theory, 
different models could propose different variables and relations to be measured. 
While GCM provide another way of analysing the correctness of the current 
models to the said theory, one should note that models do evolve continuously 
with new research. There are difficulties in establishing causality between two 
variables in the theory when multiple models address such a causal relation 
differently at different levels of abstraction. 

The proposed GCM is a generic formalism to understand the evolution of 
competence. One of the key variables of competency is the set of learning styles 
adopted and exhibited by a single learner. GCM has the capacity to analyse 
successful learning styles in specific learning situations in a large population of 
learners. With this data, one can identify the particular learning style that would 
be beneficial to a learner in given learning situation. Once learners’ learning 
styles are identified, this information can be used for providing adaptive sup-
port such as adaptive courses that match learners’ learning styles. In order to 
provide learners with such adaptive courses, a framework of learning objects is 
suggested, including commonly used types of learning objects such as content 
objects, outlines, reflection quizzes, self-assessment quizzes, discussion forum 
activities, additional reading material, animations, exercises, examples, real-life 
applications, conclusions and assignments. Based on this framework, adaptivity 
to fit students’ learning styles is provided by changing the sequence in which 
these types of learning objects are presented as well as annotating types of 
learning objects which fit well to students’ learning styles. For example, for an 
active learner, self-assessment tests, exercises, animations, and forum activities 
are annotated as particularly important since they support an active learning 
style where students prefer to learn by trying things out and discussing with 
others about the learned material. Furthermore, self-assessment tests, exercises 
and animations are promoted to be presented in the very beginning of a section 
in order to spark students’ interest in the content of the section. The degree of 
adaptivity can be enhanced with refinements based on information gleaned 
from GCM. Once the current learning style of the learner has been identified, 
the sequence of individual instructional activities can be further adapted based 
on the generic GCM models for a given population of learners. 

It is also conceivable to discover learning styles corresponding to specific 
theories from observed learner interactions and build models based on these 
observations. Studies could also treat learning styles as causal data and observe 
their influences on performance. In this article, we promote the notion that, to 
be effective, adaptive instruction should employ causal competency and lear-
ning styles in a complementary fashion, with the possibility of learning styles 
being embedded in the competency model as a cause or as an effect. 
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The exploratory causal framework and the learning style framework could 
feed on each other’s data, and strengthen each other’s capacity to adapt as well 
as contribute to adaptive instruction, over time. Together, we believe, they form 
an integral component of any online learning environment in adapting online 
content and online interactions.
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