Main Article Content

Abstract

Social interactions are crucial for children’s development, attracting significant interest from educators and researchers. Traditional methods of data collection in educational settings have limitations, prompting the exploration of ICT devices for more accurate and efficient quantitative data collection. This systematic review, following the PRISMA framework, analysed 21 studies that used sensor devices to collect data on social interactions among children aged 0-12 in educational environments. The studies investigated various aspects such as interaction mapping, disease transmission, homophily, and play types, predominantly using observational or descriptive approaches. They were categorized into three levels of ecological complexity: (1) validation of sensor devices, (2) interaction analysis as a predictor of disease spread and vocabulary growth, and (3) examination of children’s social dynamics. Findings indicate that sensor devices are particularly effective when combined with Social Network Analysis (SNA), which facilitates comprehensive analysis and graphical representation of social networks. Quantitative data on social interactions could help identify and support children facing exclusion or marginalization, allowing for targeted educational interventions. However, there is a notable gap in the literature regarding the use of sensor devices in educational interventions, underscoring the need for further research to evaluate their effectiveness and facilitate their application in education.

Keywords

Sensor Devices Assessment Technologies Children Interaction Educational Context Social Network Analysis

Article Details

How to Cite
Pinetti, S., Bisagno, E., Mazzoni, E., & Cadamuro, A. (2025). Automating the analysis of social interactions in educational settings: a scoping review. Journal of E-Learning and Knowledge Society, 21(1). https://doi.org/10.20368/1971-8829/1135997

References

  1. Altman, R. L., Laursen, B., Perry, L. K., & Messinger, D. S. (2020). Validation of continuous measures of peer social interaction with self- and teacher-reports of friendship and social engagement. The European Journal of Developmental Psychology, 17(5), 773–785. https://doi.org/10.1080/17405629.2020.1716724
  2. Atzmueller, M., Thiele, L., Stumme, G., & Kauffeld, S. (2018, January 18-19). Analyzing group interaction on networks of face-to-face proximity using wearable sensors [Paper presentation]. 2018 IEEE International Conference on Future IoT Technologies, Eger. https://doi.org/10.1109/FIOT.2018.8325593
  3. Avramidis, E., Strogilos, V., Aroni, K., & Kantaraki, C. T. (2017). Using sociometric techniques to assess the social impacts of inclusion: Some methodological considerations. Educational Research Review, 20, 68–80. https://doi.org/10.1016/j.edurev.2016.11.004
  4. Banarjee, C., Tao, Y., Fasano, R. M., Song, C., Vitale, L., Wang, J., Shyu, M.-L., Perry, L. K., & Messinger, D. S. (2023). Objective quantification of homophily in children with and without disabilities in naturalistic contexts. Scientific Reports, 13(1), 903. https://doi.org/10.1038/s41598-023-27819-6
  5. Becker, I., Rigaud, V. M., & Epstein, A. (2023). Getting to Know Young Children: Alternative Assessments in Early Childhood Education. Early Childhood Education Journal, 51(5), 911–923. https://doi.org/10.1007/s10643-022-01353-y
  6. Cassotti, M. (2022). Socio-emotional learning: how do we learn in connection with others?. In Habib M. (Ed.), Emotional Processes in Learning Situations (1st ed., pp. 145–165). Wiley-ISTE. https://doi.org/10.1002/9781394150458.ch6
  7. Choudhury, T., & Pentland, A., (2003). Sensing and modeling human networks using the sociometer [Paper presentation]. Seventh IEEE International Symposium on Wearable Computers, New York. https://doi.org/10.1109/ISWC.2003.1241414
  8. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. https://doi.org/10.1146/annurev.psych.093008.100427
  9. Cocco, V. M., Bisagno, E., Bernardo, G. A. D., Bicocchi, N., Calderara, S., Palazzi, A., Cucchiara, R., Zambonelli, F., Cadamuro, A., Stathi, S., Crisp, R., & Vezzali, L. (2023). Let’s stay close: An examination of the effects of imagined contact on behavior toward children with disability. Social Development, 32, 1042–1059. https://doi.org/10.1111/sode.12662
  10. Dai, S., Bouchet, H., Nardy, A., Fleury, E., Chevrot, J.-P., & Karsai, M. (2020). Temporal social network reconstruction using wireless proximity sensors: Model selection and consequences. EPJ Data Science, 9(1), 19. https://doi.org/10.1140/epjds/s13688-020-00237-8
  11. Duan, D., Huang, Y., Cui, J., Wang, L., Wang, X., & Zha, H. (2017). Computer vision analysis for children’s social play classification in peer-play scenarios. Journal of Ambient Intelligence and Smart Environments, 9(2), 225–238. https://doi.org/10.3233/AIS-170424
  12. Eichengreen, A., Tsou, Y. T., Nasri, M., van Klaveren, L. M., Li, B., Koutamanis, A., Baratchi, M., Blijd-Hoogewys, E., Kok, J., & Rieffe, C. (2023). Social connectedness at the playground before and after COVID-19 school closure. Journal of applied developmental psychology, 87, 101562. https://doi.org/10.1016/j.appdev.2023.101562
  13. Elbaum, B., Perry, L. K., & Messinger, D. S. (2024). Investigating Children’s Interactions in Preschool Classrooms: An Overview of Research Using Automated Sensing Technologies. Early childhood research quarterly, 66, 147–156. https://doi.org/10.1016/j.ecresq.2023.10.005
  14. Fasano, R. M., Perry, L. K., Zhang, Y., Vitale, L., Wang, J., Song, C., & Messinger, D. S. (2021). A granular perspective on inclusion: Objectively measured interactions of preschoolers with and without autism. Autism research: official journal of the International Society for Autism Research, 14(8), 1658–1669. https://doi.org/10.1002/aur.2526
  15. Felaco, C. (2019). La social network analysis e la ricerca mixed methods. PM edizioni. https://hdl.handle.net/11588/759810
  16. Grantz, K. H., Cummings, D. A. T., Zimmer, S., Vukotich, C., Jr, Galloway, D., Schweizer, M. L., Guclu, H., Cousins, J., Lingle, C., Yearwood, G. M. H., Li, K., Calderone, P., Noble, E., Gao, H., Rainey, J., Uzicanin, A., & Read, J. M. (2021). Age-specific social mixing of school-aged children in a US setting using proximity detecting sensors and contact surveys. Scientific reports, 11(1), 2319. https://doi.org/10.1038/s41598-021-81673-y
  17. Hansen, J. H. L., Najafian, M., Lileikyte, R., Irvin, D., & Rous, B. (2019). Speech and language processing for assessing child–adult interaction based on diarization and location. International Journal of Speech Technology, 22(3), 697–709. https://doi.org/10.1007/s10772-019-09590-0
  18. Horn, L., Karsai, M., & Markova, G. (2024). An automated, data-driven approach to children’s social dynamics in space and time. Child development perspectives, 18(1), 36–43. https://doi.org/10.1111/cdep.12495
  19. Iacopini, I., Karsai, M., & Barrat, A. (2023). The temporal dynamics of group interactions in higher-order social networks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2306.09967
  20. Irvin, D. W., Luo, Y., Huffman, J. M., Grasley-Boy, N., Rous, B., & Hansen, J. H. L. (2021). Capturing talk and proximity in the classroom: Advances in measuring features of young children’s friendships. Early Childhood Research Quarterly, 57, 102–109. https://doi.org/10.1016/j.ecresq.2021.05.003
  21. Komatsubara, T., Shiomi, M., Kaczmarek, T., Kanda, T., & Ishiguro, H. (2019). Estimating Children’s Social Status Through Their Interaction Activities in Classrooms with a Social Robot. International Journal of Social Robotics, 11(1), 35–48. https://doi.org/10.1007/s12369-018-0474-7
  22. Leoni, E., Cencetti, G., Santin, G., Istomin, T., Molteni, D., Picco, G. P., Farella, E., Lepri, B., & Murphy, A. L. (2022). Measuring close proximity interactions in summer camps during the COVID-19 pandemic. EPJ data science, 11(1), 5. https://doi.org/10.1140/epjds/s13688-022-00316-y
  23. Marsh, B., & Mitchell, N. (2014). The role of video in teacher professional development. Teacher Development, 18(3), 403–417. https://doi.org/10.1080/13664530.2014.938106
  24. Messinger, D. S., Prince, E. B., Zheng, M., Martin, K., Mitsven, S. G., Huang, S., Stölzel, T., Johnson, N., Rudolph, U., Perry, L. K., Laursen, B., & Song, C. (2019). Continuous measurement of dynamic classroom social interactions. International Journal of Behavioral Development, 43(3), 263–270. https://doi.org/10.1177/0165025418820708
  25. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  26. Nasri M, Tsou Y-T, Koutamanis A, Baratchi M, Giest S, Reidsma D, Rieffe C. A Novel Data-driven Approach to Examine Children’s Movements and Social Behaviour in Schoolyard Environments. Children. 2022; 9(8):1177. https://doi.org/10.3390/children9081177
  27. Nasri, M., Baratchi, M., Tsou, YT., Giest, S., Koutamanis, A., & Rieffe, C. (2023). A novel metric to measure spatio-temporal proximity: A case study analyzing children’s social network in schoolyards. Applied Network Science, 8(1), 50. https://doi.org/10.1007/s41109-023-00571-6
  28. Perry, L. K., Mitsven, S. G., Custode, S., Vitale, L., Laursen, B., Song, C., & Messinger, D. S. (2022). Reciprocal patterns of peer speech in preschoolers with and without hearing loss. Early Childhood Research Quarterly, 60, 201–213. https://doi.org/10.1016/j.ecresq.2022.02.003
  29. Perry, L. K., Prince, E. B., Valtierra, A. M., Rivero-Fernandez, C., Ullery, M. A., Katz, L. F., Laursen, B., & Messinger, D. S. (2018). A year in words: The dynamics and consequences of language experiences in an intervention classroom. PloS one, 13(7), e0199893. https://doi.org/10.1371/journal.pone.0199893
  30. Pronin, E., & Hazel, L. (2023). Humans’ bias blind spot and its societal significance. Current Directions in Psychological Science, 32(5), 402–409. https://doi.org/10.1177/09637214231178745
  31. Stehlé, J., Charbonnier, F., Picard, T., Cattuto, C., & Barrat, A. (2013). Gender homophily from spatial behavior in a primary school: A sociometric study. Social Networks, 35(4), 604–613. https://doi.org/10.1016/j.socnet.2013.08.003
  32. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J. F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., & Vanhems, P. (2011). High-resolution measurements of face-to-face contact patterns in a primary school. PloS one, 6(8), e23176. https://doi.org/10.1371/journal.pone.0023176
  33. Stubbersfield, J. M. (2022). Content biases in three phases of cultural transmission: A review. Culture and Evolution, 19(1), 41–60. https://doi.org/10.1556/2055.2022.00024
  34. Veiga, G., de Leng, W., Cachucho, R., Ketelaar, L., Kok, J. N., Knobbe, A., Neto, C., & Rieffe, C. (2017). Social competence at the playground: Preschoolers during recess. Infant and Child Development, 26(1), Article e1957. https://doi.org/10.1002/icd.1957
  35. Zöggeler-Burkhardt, L., Embacher, E., & Smidt, W. (2023). Social relationships, interactions and learning in early childhood – theoretical approaches, empirical findings and challenges. Early Child Development and Care, 193(11–12), 1199–1203. https://doi.org/10.1080/03004430.2023.2260976